1. Find the solution of the given initial value problem

$$
y^{\prime}+3 y=t e^{-3 t}, \quad y(1)=0
$$

2. The equation that has been used to model population growth is the Gompertz equation

$$
\frac{d y}{d t}=r y \ln \left(\frac{K}{y}\right)
$$

where r and K are positive constants.
(a) Sketch the graph of $d y / d t$ versus y, find the critical points, and determine whether each is asymptotically stable or unstable.
(b) For $0 \leq y \leq K$, determine where the graph of y versus t is concave up and where is concave down.
3. Determine whether the equation is exact. If it is exact, find the solution.

$$
\left(y e^{x y} \cos 2 x-2 e^{x y} \sin 2 x+2 x\right)+\left(x e^{x y} \cos 2 x-3\right) y^{\prime}=0
$$

4. Find an integrating factor and solve the given equation

$$
1+\left(\frac{x}{y}-\cos y\right) y^{\prime}=0
$$

5. Solve the initial value problem

$$
4 y^{\prime \prime}-y=0, \quad y(0)=2, y^{\prime}(0)=\beta
$$

Then find β so that the solution approaches zero as $t \rightarrow \infty$.
6. Find the solution of the given initial value problem.

$$
y^{\prime \prime}+y=0, \quad y(\pi / 3)=2, y^{\prime}(\pi / 3)=-2
$$

