Fourier Series and Transform

KEEE343 Communication Theory

 Lecture \#9, March 3 I, 201 IProf.Young-Chai Ko
koyc@korea.ac.kr

Summary

- Amplitude modulation
- Introduction
- Carrier wave
- Modulation
- Envelope detector

Introduction to Amplitude Modulation

- Consideration of communication system design
- Complexity
- Two primary communication resources
- Transmit power
- Channel bandwidth
- Amplitude modulation family
- Amplitude modulation
- Double sideband-suppressed carrier (DSB-SC)
- Single sideband (SSB)
- Vestigial sideband (VSB)

Carrier Wave

- Recall that the cosine function (or sine function) can shift the band by the frequency of the cosine function.

$$
\mathcal{F}[m(t)]=M(f)
$$

$\mathcal{F}\left[m(t) \cos \left(2 \pi f_{c} t\right)\right]=\frac{1}{2}\left[M\left(f-f_{c}\right)+M\left(f+f_{c}\right)\right]$

- Carrier wave (or signal)
- Carrier wave is a signal to move (translate) the baseband signal to the passband signal.
- A commonly used carrier is a sinusoidal wave.

Amplitude Modulation

- Theory
- Consider a sinusoidal carrier wave

$$
c(t)=A_{c} \cos \left(2 \pi f_{c} t\right)
$$

- Denote the message signal (information bearing signal) as $m(t)$
- Transmission:Then an amplitude-modulated (AM) wave is

$$
s(t)=A_{c}\left[1+k_{a} m(t)\right] \cos \left(2 \pi f_{c} t\right)
$$

- Receiver: Envelope detector

Waveform of the multiplication of the signal and the sinusoidal function

- Consider $m(t)=e^{-t_{\text {of }}}$ which the waveform is illustrated as below:

- Now consider $m(t)=t^{2}-6 t+8$ - Waveform of $m(t) \times c(t)$

- Now consider $m(t)=t^{2}-6 t+9$
- Waveform of $m(t) \times c(t)$

- Now consider $m(t)=t^{2}-6 t+5$
- Waveform of $m(t) \times c(t)$

- Now let us do "amplitude modulation" such as

$$
s(t)=\left[1+k_{a} m(t)\right] c(t)
$$

where we set k_{a} to be $\left|k_{a} m(t)\right|<1$ such as

$$
k_{a}=\frac{1}{\max |m(t)|}
$$

- If the amplification factor is considered, the amplitude modulated signal can be written as

$$
s(t)=A_{0}\left[1+k_{a} m(t)\right] c(t)
$$

Note that A_{c} is just amplification factor.

- Envelop of $s(t)$ has essentially the same shape as the message signal $m(t)$ provided that two conditions are satisfied:
I. The amplitude of $k_{a} m(t)$ is always less than unity; that is

$$
\left|k_{a} m(t)\right|<1, \quad \text { for all } t
$$

(O) In this case, the function $1+k_{a} m(t)$ is always positive !
2. The carrier frequency f_{c} is much greater than the highest frequency component W of the message signal $m(t)$ - that is,

$$
f_{c} \gg W
$$

We call W the message bandwidth.

Frequency-Domain Description of AM

- AM transmit signal

$$
\begin{aligned}
s(t) & =A_{c}\left[1+k_{a} m(t)\right] \cos \left(2 \pi f_{c} t\right) \\
& =A_{c} \cos \left(2 \pi f_{c} t\right)+A_{c} k_{a} m(t) \cos \left(2 \pi f_{c} t\right)
\end{aligned}
$$

- Fourier transform of AM transmitted signal
$S(f)=\frac{A_{c}}{2}\left[\delta\left(f-f_{c}\right)+\delta\left(f+f_{c}\right)\right]+\frac{k_{a} A_{c}}{2}\left[M\left(f-f_{c}\right)+M\left(f+f_{c}\right)\right]$
where we make use of

$$
\mathcal{F}\left[\cos \left(2 \pi f_{c} t\right)\right]=\frac{1}{2}\left[\delta\left(f-f_{c}\right)+\delta\left(f+f_{c}\right)\right]
$$

(a)

Transmission bandwidth: $B_{T}=2 \mathrm{~W}$

Figure 3.2 (a) Spectrum of message signal $m(t)$. (b) Spectrum of AM wave $s(t)$.

Single -Tone Modulation

- Consider single-tone modulating wave (message signal)

- carrier wave $c(t)=A_{c} \cos \left(2 \pi f_{c} t\right)$

- AM wave
$s(t)=A_{c}\left[1+\mu \cos \left(2 \pi f_{m} t\right)\right] \cos \left(2 \pi f_{c} t\right)$
where $\mu=k_{a} A_{m}$
- Maximum envelope value and Minimum envelope value

$$
A_{\max }=A_{c}(1+\mu), \quad A_{\min }=A_{c}(1-\mu)
$$

- Ratio between the max and min values

$$
\frac{A_{\max }}{A_{\min }}=\frac{A_{c}(1+\mu)}{A_{c}(1-\mu)} \quad \Longrightarrow \mu=\frac{A_{\max }-A_{\min }}{A_{\max }+A_{\min }}
$$

- Fourier transform
$s(t)=A_{c} \cos \left(2 \pi f_{c} t\right)+\frac{1}{2} \mu A_{c} \cos \left[2 \pi\left(f_{c}+f_{m}\right) t\right]+\frac{1}{2} \mu A_{c} \cos \left[2 \pi\left(f_{c}-f_{m}\right) t\right]$ $S(f)=\frac{1}{2} A_{c}\left[\delta\left(f-f_{c}\right)+\delta\left(f+f_{c}\right)\right]$

$$
+\frac{1}{4} \mu A_{c}\left[\delta\left(f-f_{c}-f_{m}\right)+\delta\left(f+f_{c}+f_{m}\right)\right]
$$

$$
+\frac{1}{4} \mu A_{c}\left[\delta\left(f-f_{c}+f_{m}\right)+\delta\left(f+f_{c}-f_{m}\right)\right]
$$

- Recall the single-tone modulated signal
$\left.s(t)=A_{c} \cos \left(2 \pi f_{c} t\right)+\frac{1}{2} A_{c} \mu \cos \left[2 \pi\left(f_{c}+f_{m}\right) t\right)\right]+\frac{1}{2} A_{c} \mu \cos \left[2 \pi\left(f_{c}-f_{m}\right) t\right]$

- Power calculation
- Carrier power $=\frac{1}{2} A_{c}^{2}$
- Upper-side-frequency power $=\frac{1}{8} \mu^{2} A_{c}^{2}$
- Lower-side-frequency power $=\frac{1}{8} \mu^{2} A_{c}^{2}$
- Power ratio
- Total power $=\frac{1}{2} A_{c}^{2}+\frac{1}{8} \mu^{2} A_{c}^{2}+\frac{1}{8} \mu^{2} A_{c}^{2}=0.25\left(2+\mu^{2}\right) A_{c}^{2}$
- Power portion of carrier signal

$$
\frac{\text { Carrier power }}{\text { Total power }}=\frac{2}{2+\mu^{2}}
$$

- Power portion of message signal

$$
\frac{\text { Uppersideband }+ \text { Lowersideband }}{\text { Total power }}=\frac{\mu^{2}}{2+\mu^{2}}
$$

- If $\mu=1$, only $\mathrm{I} / 3$ out of total power is allocated to the message signal.

Envelope Detector

- The narrowband message signal modulated by AM can be recovered at the receiver by a simple envelope detector circuit

