# Signal and System Models 

KEEE343 Communication Theory
Lecture \#2, March 8, 201 I
Prof.Young-Chai Ko koyc@korea.ac.kr

## Summary

- Signal Classification
- Basic Continuous-Time Signals
- System and Classification of Systems


## Signal Classification

- Continuous-Time and Discrete-Time signals
- Analog and Digital signals
- Real and Complex signals
- Deterministic and Random signals
- Even and Odd signals
- Periodic and Nonperiodic signals
- Energy and Power signals


## Continuous-Time and Discrete-Time Signals

- Continuous-time signals
- A signal $x(t)$ is continuous-time if $t$ is a continuous variable.
- Discrete-time signals
- If $t$ is a discrete variable, that is, $x(t)$ is defined at discrete times, then $x(t)$ is a discrete-time signal.
- Since a discrete time is defined at discrete times such as $t=n T$, a discrete-time signal is often identified as a sequence of numbers, denoted by $\left\{x_{n}\right\}$ or $x[n]$


## Continuous-Time and Discrete-Time Signals


(a)

(b)

## Analog and Digital Signals

- Analog signals

$$
-\infty<x(t)<\infty
$$

- Digital signals

$$
x[n] \in\left\{q_{1}, q_{2}, \cdots, q_{n}\right\}
$$

- Analog signals to Digital signals



## Real and Complex Signals

- Real signal
- If $x(t)$ takes real number, it is a real signal
- Complex signal

$$
x(t)=x_{1}(t)+j x_{2}(t)
$$

- Dumb Questions:

> Is the complex signal real?
> Does there really exist an imaginary part?

- Example of Quadrature Components (or generally orthogonal signals)


## Even and Odd Signals

- Even signal if

$$
x(-t)=x(t)
$$

- Odd signal if

$$
x(-t)=-x(t)
$$




## Even and Odd Signals

- Any signal $x(t)$ can be expressed as a sum of even and odd signals:

$$
x(t)=x_{e}(t)+x_{o}(t)
$$

- Even part and odd part of $x(t)$

$$
\begin{aligned}
& x_{e}(t)=\frac{1}{2}\{x(t)+x(-t)\} \\
& x_{o}(t)=\frac{1}{2}\{x(t)+x(-t)\}
\end{aligned}
$$

## Periodic and Nonperiodic Signals

- Periodic signal with period $T$ if

$$
x(t+T)=x(t) \quad \text { for all } t
$$

- Fundamental period $T_{0}$
- smallest positive value of $T$

$$
T=m T_{0} \quad \text { for any integer } m
$$

## Energy and Power Signals

- Energy of continuous time signal $x(t)$ is defined as

$$
E=\int_{-\infty}^{\infty}|x(t)|^{2} d t
$$

- Normalized average power is defined as

$$
P=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-\infty}^{\infty}|x(t)|^{2} d t
$$

- $x(t)$ is an energy signal if and only if

$$
0<E<\infty
$$

- $x(t)$ is a power signal if and only if

$$
0<P<\infty
$$

## Basic Continuous-Time Signals

- Unit step function
- Unit impulse function (Dirac delta function)
- Complex exponential signals
- General complex exponential signals
- Real exponential signals
- Sinusoidal signals


## Unit Step Function

- Definition

$$
u(t)= \begin{cases}1, & t>0 \\ 0, & t<0\end{cases}
$$

- Shifted unit step function

$$
u\left(t-t_{0}\right)= \begin{cases}1, & t>t_{0} \\ 0, & t<t_{0}\end{cases}
$$


(a)

(b)

