Lecture Note 1 Communication Theory (KEEE343_03)

Prof. Young-Chai Ko 2011. 03. 05

History of Communications

- 1887 J. C. Maxwell: Maxwell's theory
- 1897 G. Marconi: wireless telegraph system
- 1915 Bell System completes U.S. telephone line
- 1920 ~ 1936 AM/FM/PCM, TV broadcasting
- 1948 C. Shannon's "A Mathematical Theory of Communications"
- 1960s Satellite systems
- 1970s First commercial wireless personal communications
- Late 80s~early 90s 1st generation wireless communication systems (AMPS): Analog communications
- 90s~late 90s 2nd generation wireless communication systems (GSM, IS-95, EDGE, etc.): Digital communications
- Late 90s ~ current 3rd generation wireless communication systems: high speed digital data/voice communication
- 4G wireless communications systems are being defined.

• More than 100 Years of history in the field of communications

Block Diagram of a Communication System

Message

- Categorization of the Message
 - Analog
 - Pressure, Temperature, Speech, Music
 - Digital
 - Written text
- Signal
 - Convert the message into the signal
 - Message must be converted by a transducer to a form suitable for the particular type of communications.
 - Electrical Communication
 - Message -> Transducer (Microphone) -> Signal (Voltage)

Signals

Function of timeFunction of frequency

Only Time multiplexing

Time and Frequency

Human Ear

Audible Frequency Range: 0 ~ 16 KHz

Frequency

Use		Frequency
Human voice		0.1 ~ 3.5 KHz
Bat voice		20 ~ 130 KHz
AM		540 ~ 1600 KHz
Television	Channels 2-4	54 ~ 72 MHz
	Channels 5–6	76 ~ 88 MHz
FM		88 ~ 108 MHz
Television	Channels 7-13	174 ~ 216 MHz
	Channels 14-83	420 ~ 890 MHz
Cellular mobile radio	Mobile to base	806 ~ 821 MHz
	Base to mobile	851 ~ 866 MHz

ISM band	Older microwave ovens; medical	902~928 MHz
Cellular mobile band	Base to mobile	935 ~ 940 MHz
Personal communication	CDMA cellular	1.8 ~ 2.0 GHz

Interference

Listeners cannot understand speaker A and Speaker B due to the interference.

Modulation and

Modulation

- Translate the baseband signal up to the passband signal.

Demodulation

-Translate the passband signal down to the baseband signal.

• Question: How do we translate the band of the signal up or down? => Use the Fourier Transform!!!

Personal Communication Example

Course Description

• Time and Frequency analysis

- Signal representation
- Fourier analysis
- Fourier transform
- Linear time invariant systems
- Modulation and Demodulation
 - Amplitude modulation (AM)
 - Angle modulation
 - Phase modulation (PM)
 - Frequency modulation (FM)
- Pulse Modulation
 - Transition from analog to digital
 - Delta modulation

Time and Frequency Analysis

- Signal Models
- Fourier Series
- Fourier Transform

Signal Models

- Deterministic and Random Signals
- Periodic and Aperiodic signals
- Phasor Signals and Spectra
- Singularity Functions
- Signal Classification

Deterministic/Random Signals

- Deterministic signals completely specified as a function of time
 - Example
 - Sinusoidal function

$$x(t) = A\cos(\omega_0 t), \quad -\infty < t < \infty$$

- Where A and ω_0 are constants
- Rectangular pulse

$$\Pi(t) = \begin{cases} 1, & |t| \le 1/2 \\ 0, & \text{otherwise} \end{cases}$$

Periodic Signals

• Periodic signals if and only if

$$x(t+T_0) = x(t), \qquad -\infty < t < \infty$$

- Where the constant T_0 is the period.
- Fundamental period (or simply period) ~ smallest number T_0 satisfying the periodic condition

Phasor Signals and Spectra

Consider

$$\mathcal{X}(t) = A e^{j(\omega_0 t + \theta)}, \quad -\infty < t < \infty$$

- *A*: Amplitude
- θ : Phase
- $f_0 = 2\pi / \omega_0$ firequency
- $\Re(t)$ is rotating phasor from $Ae^{j\omega}O$ $\Re(t) = Ae^{j(\omega_0 t + \theta)}$

- Is *\$(a)* periodic?
 - To show this, you need to prove

$$\mathcal{X}(\mathbf{x}) = \mathcal{X}(\mathbf{x} + T_0)$$

- Where $T_0 = 2\pi / \omega_0$

• Relation of rotating phasor with a real sinusoidal signal $r(t) = A cos(w t + \theta) = Re[\frac{9}{2}wt]$

$$= \operatorname{Re}[Ae^{j(\omega_0 t + \theta)}]$$

$$= \operatorname{Re}[Ae^{j(\omega_0 t + \theta)}]$$

$$A\cos(\omega_0 t + \theta) = \frac{1}{2} \Re(t) + \frac{1}{2} \Re(t)$$

$$= \frac{1}{2} Ae^{j(\omega_0 t + \theta)} + \frac{1}{2} Ae^{-j(\omega_0 t + \theta)}$$

Figure 2. Two ways of relating a phasor signal to a sinusoidal signal.
(a) Projection of a rotating phasor onto the real axis.
(b) Addition of complex conjugate rotating phasors.