

LECTURE 9

Soo-Won Kim

swkim@korea.ac.kr

10. Comparators

10.1 Comparator Specifications

10.2 Using an Opamp for a Comparator
10.3 Charge-Injection Errors

ADC block diagram

Open-loop opamp for a comparator

Simplistic approach

Fig. 10.2 A simplistic approach of using an openloop opamp for a comparator

Compare the input with ground!!

Simple to implement
\because Limited input-offset voltage

Input-Offset Voltage Errors

< Limited input-offset voltage >

Switched-capacitor comparators

Fig. 10.6 The circuit configuration (a) during the reset phase, (b) during the comparison phase

Switched-capacitor?

Switched-capacitor comparators

ϕ_{1} high, S1 closed

ϕ_{2} high, S2 closed

Switched-capacitor resistor (a) and associated waveforms and (b,c,d) the equivalent circuits

- When ϕ_{1} is high and ϕ_{2} is low

$$
q_{1}=C v_{1}
$$

- When ϕ_{2} is high and ϕ_{1} is low

$$
q_{2}=C v_{2}
$$

- If $v_{1} \neq v_{2}$, charge equal to difference

$$
q_{1}-q_{2}=C\left(v_{1}-v_{2}\right)
$$

$$
I_{\text {avg }}=\frac{C\left(v_{1}-v_{2}\right)}{T}=\frac{v_{1}-v_{2}}{R_{s c}}
$$

$$
R_{s c}=\frac{T}{C}=\frac{1}{C \cdot f_{c k}}
$$

Time, S, Z - Domain

s-Plane

Reference

http://www.faqssys.info/replicate-the-fourier-transform-time-frequency-domains-correspondence-illustration-using-tikz/
http://www.analog.com/static/importedfiles/tech_docs/dsp_book_Ch33.pdf

Charge-Injection Errors

Charge Injection

$$
\begin{align*}
& Q_{I}(y)=C_{o x}^{\prime} \times W \times L \times\left(V_{G S}-V_{T H N}\right) \\
& \Delta V_{\text {load }}=-\frac{C_{o x}^{\prime} \times W \times L \times\left(V_{G S}-V_{T H N}\right)}{2 C_{\text {load }}} \\
& \Delta V_{\text {load }}=-\frac{C_{o x}^{\prime} \times W \times L \times\left(V_{D D}-V_{\text {in }}-V_{T H N}\right)}{2 C_{\text {load }}} \tag{10.3}
\end{align*}
$$

Small-signal on-resistance of MOSFET switches

$$
\Delta V_{\text {load }}=-\frac{C_{o x}^{\prime} \times W \times L \times\left(V_{D D}-\left(V_{\text {in }}\right)-\left[V_{\text {THN } 0}+\gamma\left(\sqrt{\mid 2 V_{f p}-\left(V_{i n} \mid\right.}-\sqrt{\left|2 V_{f p}\right|}\right)\right]\right)}{2 C_{\text {load }}}
$$

$\square V_{\text {LOAD }}$ is nonlinear with respect to $V_{\text {in }}$ due to threshold voltage

Minimizing Error Due to Charge-Injection

Capacitive Feedthrough

$$
C_{o v e r l a p}=C_{o x}^{\prime} \cdot W \cdot \frac{L D}{\downarrow}
$$

Length of the gate that overlaps the drain/source

$$
\begin{equation*}
\Delta v_{\text {load }}=\frac{C_{\text {overlap }} \cdot V D D}{C_{\text {overlap }}+C_{\text {load }}} \tag{10.8}
\end{equation*}
$$

Illustration of capacitive feedthrough

Reduction of Charge Injection and Clock Feedthrough

Dummy switch circuit used to minimize charge injection
(IIIIIIV
Another method for counteracting charge injection and clock feedthrough

Charge-Injection \& Clock Feedthrough

Minimizing Charge-Injection Error

Reduction of Charge Injection using differential pair

Using a fully-differential circuit to minimize charge injection and clock feedthrough

Fig. 10.10 A Fully differential, single-stage, switchedcapacitor comparator

Example 1

Parameter values

$$
\begin{aligned}
& C_{H}=1 p F, \quad C_{o x}=6.9 \mathrm{fF} /(\mu \mathrm{m})^{2}, \quad(W / L)_{1}=20 / 0.5 \\
& C_{O V}=400 p F, \quad V_{T H}=0.7 \mathrm{~V}, V_{D D}=3 \mathrm{~V}
\end{aligned}
$$

Charge injection

$$
\begin{aligned}
\Delta V & =-\frac{\left(V_{D D}-V_{T H}\right) C_{0 x} W_{3} L_{3}}{2 C}=-\frac{(3-0.7) \times\left(6.9 \times 10^{-15} / 10^{-12}\right) \times 10 \times 10^{-6} \times 0.9 \times 10^{-6}}{2 \times 1 \times 10^{-12}} \\
& =-71.415 m \bar{W}
\end{aligned}
$$

Clock feedthrough

$$
\begin{aligned}
& C_{o v}=400 p \cdot 20 \mu=8 f F \\
& \Delta V^{\prime \prime}=-V_{C K} \cdot \frac{C_{o v}}{C_{o v}+C_{H}} \approx-V_{C K} \cdot \frac{C_{o v}}{C_{H}}=\frac{8 f}{1 p} \cdot 3 V=-24 m V
\end{aligned}
$$

Example 2

Parameter values

$$
\begin{aligned}
& C=2 p F, C_{o x}=2.1 f F /(\mu m)^{2}, \quad(W / L)_{3}=10 \mu m / 0.9 \mu m, \\
& L_{O V}=0.1 \mu m, V_{T H}=0.8 \mathrm{~V}, V_{D D}=2.6 \mathrm{~V}, V_{S S}=-2.6 \mathrm{~V}
\end{aligned}
$$

Fig. 10.7 The comparator in Fig. 10.3, with n-channel switches and overlap capacitance shown.
a. Calculate the voltage change due to channel charge

$$
\begin{aligned}
\Delta V^{\prime \prime} & =-\frac{\left(V_{D D}-V_{T H}\right) C_{o x} W_{3} L_{3}}{2 C}=-\frac{(2.6-0.8) \times\left(2.1 \times 10^{-3}\right) \times 10 \times 10^{-6} \times 0.9 \times 10^{-6}}{2 \times 2 \times 10^{-12}} \\
& =-8.505 m V
\end{aligned}
$$

Example 2(Cont.)

Parameter values

$$
\begin{aligned}
& C=2 p F, C_{o x}=2.1 \mathrm{fF} /(\mu \mathrm{m})^{2}, \quad(\mathrm{~W} / L)_{3}=10 \mu \mathrm{~m} / 0.9 \mu \mathrm{~m}, \\
& L_{O V}=0.1 \mu m, V_{T H}=0.8 \mathrm{~V}, V_{D D}=2.6 \mathrm{~V}, V_{S S}=-2.6 \mathrm{~V}
\end{aligned}
$$

b. Calculate the voltage change due to overlap capacitance

Overlap capacitance is given by

$$
C_{o v}=W_{3} L_{o v} C_{o x}=10 \times 10^{-6} \times 0.1 \times 10^{-6}\left(2.1 \times 10^{-3}\right)=2.1 f F
$$

Voltage change due to overlap capacitanc $\Delta V_{\text {load }}=\frac{C_{\text {overap }} \cdot V D}{C_{\text {overap }}+C_{\text {load }}}$ (10.8)

$$
\Delta V^{\prime \prime}=-\frac{\left(V_{D D}-V_{S S}\right) C_{o v}}{C_{o v}+C}=-\frac{(2.6+2.6) \times 2.1 \times 10^{-15}}{2.1 \times 10^{-15}+2.1 \times 10^{-12}}=
$$

c. Calculate the total voltage change due to both

$$
\Delta V^{\prime}=-(8.505+5.454) m V=
$$

