

LECTURE 4

Soo-Won Kim swkim@korea.ac.kr

- 5.1 Ideal Model of negative Feedback
- 5.2 Dynamic Response of Feedback Amplifier
- 5.3 First- and Second-Order Feedback Systems
- **5.4 Common Feedback Amplifiers**

5.1 Ideal model of negative feedback

Close-loop Transfer Function

Fig. 5.1 Ideal model of a negativefeedback system.

 $V = \beta Y$ $y = (u - \beta y)A$ $A_{CL} = \frac{y}{u} = \frac{A}{1 + A\beta}$ $\approx \frac{1}{\beta} (\text{For } A\beta >> 1)$

Merits of Negative Feedback

- 1. Better-defined, lower gain
- 2. Bandwidth enhancement
- 3. Modification of I/O Impedances
- 4. Linearization

Demerits of Negative Feedback

1. Stability issue

5.1 Ideal model of negative feedback

Transfer function of negative feedback

5.1 Ideal model of negative feedback

Fig. 5.1 Ideal model of a negativefeedback system.

ex) CS stage

$$A_{CL} = \frac{y}{u} = \frac{A}{1 + A\beta} \xrightarrow{A\beta >> 1} A_{CL} = \frac{y}{u} \approx \frac{1}{\beta}$$

A large loop gain is needed to create a precise gain, one that does not depend on A

5.1 Ideal model of negative feedback

Bandwidth Enhancement

Although negative feedback lowers the gain by (1+KA₀), it also extends the bandwidth by the same amount.

5.1 Ideal model of negative feedback

Bandwidth Enhancement

5.1 Ideal model of negative feedback

Modification of I/O Impedances

 $= i_X R_D \cdot \frac{R_2}{R_1 + R_2} - V_X$ $i_X = -g_m V_{GS}$ $= -g_m \left(i_X R_D \cdot \frac{R_2}{R_1 + R_2} - V_X \right)$ $R_{in,closed} = \frac{1}{g_m} \left(1 + \frac{R_2}{R_1 + R_2} g_m R_D \right)$

6

5.1 Ideal model of negative feedback

Modification of I/O Impedances

5.1 Ideal model of negative feedback

Linearization

Closed-loop characteristic is more linear than open-loop characteristic

5. Feedback Amplifier

5. 2 Dynamic response of feedback

Instability of a Negative Feedback Loop

Condition for Oscillation

$$KH(j\omega_1) = -1 \quad \Longrightarrow \quad |KH(j\omega_1)| = 1$$
$$\angle KH(j\omega_1) = -180$$

5. Feedback Amplifier

5. 2 Dynamic response of feedback amplifiers

Condition for Oscillation

Condition for Oscillation

5. Feedback Amplifier

5. 2 Dynamic response of feedback amplifiers

Phase Margin

Phase Margin = $\angle L(\omega_{GX})$ +180°

Time Domain Response

$$e^{(jw_{\rho}+\sigma_{\rho})t} = e^{\sigma_{\rho}t} \left(\cos w_{\rho}t + j\sin w_{\rho}t\right)$$

Poles on the RHP Unstable (no good) Poles on the jω axis Oscillatory (no good) Poles on the LHP Decaying (good)

Example of Feedback System

Frequency Compensation

Example of Frequency Response

Frequency Compensation Example

Miller Compensation

To save chip area, Miller multiplication of a smaller capacitance creates an equivalent effect.

Simulation

: No Compensation

