Data Structures and Algorithms

- Graph 2 -

School of Electrical Engineering Korea University

Graphs with negative costs

- In case of a graph with negative edge costs, Dijkstra's algorithm does not work
- A tempting solution is to add a constant Δ to each edge cost, thus removing negative edges
=> Paths with more edges become more weighty than paths with fewer edges

Dijkstra's algorithm

```
WeightedNegative( Table T )
    Queue Q;
    Vertex V, W;
/* 3*/ while( !IsEmpty( Q ) )
}
```

$/ * 1 * /$
$/ * 2 * /$
1* 4*/
1* 5*/
/* 6*/
$1 * 7 * /$
/* 8*/
/* 9*/
$/ * 10 * /$
$/ * 11 * /$

Acyclic Graphs

- In case of acyclic graph, it is possible to improve Dijkstra's algorithm by selecting vertices in topological order
- The algorithm can be done in one pass
- Usage
- Modeling downhill skiing problem
- Modeling nonreversible chemical reactions
- Critical path analysis using activity node graph

Activity Node Graph

- Each node represents an activity that must be performed, along with the time it takes to complete the activity
- The edge represents precedence relationships

Application

- Construction projects
- Earliest completion time of the project (Ex) 10 time units for the path A, C, F, H
- Which activities can be delayed, by how long without affecting the minimum completion time
(Ex) B can be delayed 2 time units

Activity node graph

Figure 9.34 Activity-node graph

Event node graph

To perform these calculations, convert the activity-node graph to an event -node graph

Figure 9.35 Event-node graph

Graph conversion

Earliest(Latest) Completion Time

- Let $\boldsymbol{E C} \boldsymbol{C}_{\boldsymbol{i}}$ is the earliest completion time for node i, then

$$
\begin{aligned}
& \boldsymbol{E} \boldsymbol{C}_{1}=0 \\
& \boldsymbol{E} \boldsymbol{C}_{w}=\max _{(v, w) \in E}\left(\boldsymbol{E} C_{v}+\boldsymbol{c}_{v, w}\right)
\end{aligned}
$$

- Let $\boldsymbol{L C} \boldsymbol{C}_{i}$ is the latest completion time for node i, then

$$
\begin{aligned}
& L C_{n}=E C_{n} \\
& L C_{v}=\min _{(v, w) \in E}\left(L C_{w}-c_{v, w}\right)
\end{aligned}
$$

Earliest Completion Time $E \boldsymbol{C}_{\boldsymbol{i}}$

- $E C_{1}=0$

$$
E C_{w}=\max _{(v, w) \in E}\left(E C_{v}+c_{v, w}\right)
$$

Figure 9.36 Earliest completion times

Latest Completion Time $\boldsymbol{L C} \boldsymbol{C}$

- $L C_{n}=E C_{n}$
$L C_{v}=\min _{(v, w) \in E}\left(L C_{w}-\boldsymbol{c}_{v, w}\right)$

Figure 9.37 Latest completion times

Slack Time

- Slack time for each edge represents the amount of time that the completion of the corresponding activity can be delayed without delaying the overall completion.

$$
\operatorname{Slack}_{(v, w)}=L C_{w}-E C_{v}-c_{v, w}
$$

Slack Time

Figure 9.38 Earliest completion time, latest completion time, and slack

- There is at least one critical path consisting entirely of zero-slack edges, which must finish on schedule

Minimum Spanning Tree

- Assumes undirected and connected graph
- A tree formed from graph edges that connects all the vertices of G at lowest total cost
- Example in Fig. 9.48
- No. of edges in the MST $=|v|-1$

Minimum Spanning Tree

- Spanning subgraph
- Subgraph of G containing all the vertices of G
- Spanning tree
- Spanning subgraph that is itself a tree
- Minimum spanning tree (MST)
- Spanning tree of a weighted graph with minimum total edge weight
- Applications
- Communications networks
- Transportation networks

Minimum Spanning Tree

Cycle Property

- Let \boldsymbol{T} be a minimum spanning tree of a weighted graph \boldsymbol{G}
- Let \boldsymbol{e} be an edge of \boldsymbol{G} that is not in \boldsymbol{T} and let C be the cycle formed by e with T
- For every edge f of C, weight $(f) \leq$ weight $($ e)

Proof by contradiction
If weight $(f)>$ weight (e), we can get a spanning tree of smaller weight by replacing e with f

Cycle Property

Replacing f with e yields a better spanning tree
\longleftarrow

Partition Property

- Partition the vertices of \boldsymbol{G} into subsets \boldsymbol{U} and \boldsymbol{V}
- Let e be an edge of minimum weight across U and V
- There is a MST of \boldsymbol{G} containing edge \boldsymbol{e}

Proof:

- Let \boldsymbol{T} be an MST of \boldsymbol{G}
- If \boldsymbol{T} does not contain \boldsymbol{e}, consider the cycle \boldsymbol{C} formed by \boldsymbol{e} with \boldsymbol{T} and let f be an edge of \boldsymbol{C} across the partition
- By the cycle property, weight $(f) \leq$ weight $($ e $)$ Thus, weight $(f)=$ weight (e)
- We obtain another MST by replacing f with e

Partition Property

Replacing f with e yields another MST

Minimum spanning tree

Algorithms for MST

- Prim's Algorithm
- Very similar to Dijkstra's Algorithm
- Kruskal's Algorithm
- Continually select the edges in order of smallest weight and accept an edge if it does not cause a cycle

Figure 9.49 Prim's algorithm after each stage

Figure 9.49 Prim's algorithm after each stage

MST by Prim's Algorithm

Table in Prim's algorithm

\boldsymbol{v}	Known	$\boldsymbol{d}_{\boldsymbol{v}}$	$\boldsymbol{p}_{\boldsymbol{v}}$
v_{1}	0	0	0
v_{2}	0	∞	0
v_{3}	0	∞	0
v_{4}	0	∞	0
v_{5}	0	∞	0
v_{6}	0	∞	0
v_{7}	0	∞	0

Figure 9.50 Initial configuration of table used in Prim's algorithm

Table in Prim's algorithm

Figure 9.51 The table After v_{1} is declared known

\boldsymbol{v}	Known	$\boldsymbol{d}_{\boldsymbol{v}}$	$\boldsymbol{p}_{\boldsymbol{v}}$
v_{1}	\square	0	0
v_{2}	0	2	v_{1}
v_{3}	0	4	v_{1}
v_{4}	0	1	v_{1}
v_{5}	0	∞	0
v_{6}	0	∞	0
v_{7}	0	∞	0

\boldsymbol{v}	Known	$\boldsymbol{d}_{\boldsymbol{v}}$	$\boldsymbol{p}_{\boldsymbol{v}}$
v_{1}	$\boxed{1}$	0	0
v_{2}	0	2	v_{1}
v_{3}	0	2	v_{4}
v_{4}	1	1	v_{1}
v_{5}	0	7	v_{4}
v_{6}	0	8	v_{4}
v_{7}	0	4	v_{4}

Figure 9.52 The table After V_{4} is declared known

Table in Prim's algorithm

Figure 9.53 The table After v_{2} and then v_{3} are declared known

v	Known	d_{v}	p_{v}
v_{1}	1	0	0
v_{2}	1	2	v_{1}
v_{3}	1	2	v_{4}
v_{4}	1	1	ν_{1}
v_{5}	0	7	v_{4}
v_{6}	0	5	v_{3}
ν_{7}	0	4	v_{4}

\boldsymbol{v}	Known	$\boldsymbol{d}_{\boldsymbol{v}}$	$\boldsymbol{p}_{\boldsymbol{v}}$
v_{1}	1 0 0 v_{2} 1 2 v_{1} v_{3} 1 2 v_{4} v_{4} 1 1 v_{1} v_{5} 0 6 v_{6} 0 1 v_{7} v_{7} 1		

Figure 9.54 The table After v_{7} is declared known

Table in Prim's algorithm

Figure 9.55 The table After v_{6} and v_{5} are selected (Prim's algorithm terminates)

\boldsymbol{v}	Known	$\boldsymbol{d}_{\boldsymbol{v}}$	$\boldsymbol{p}_{\boldsymbol{v}}$
v_{1}	1	0	0
v_{2}	1	2	v_{1}
v_{3}	1	2	v_{4}
v_{4}	1	1	v_{1}
v_{5}	1	6	v_{7}
v_{6}	1	1	v_{7}
v_{7}	1	4	v_{4}

Prim-Jarnik's Algorithm

- We assume that the graph is connected
- We pick an arbitrary vertex s and we grow the MST as a cloud of vertices, starting from s
- We store with each vertex v a label $d(v)$ representing the smallest weight of an edge connecting v to a vertex in the cloud
- At each step
- We add to the cloud the vertex \boldsymbol{u} outside the cloud with the smallest distance label
- We update the labels of the vertices adjacent to u

Prim-Jarnik's Algorithm (cont.)

- A priority queue stores the vertices outside the cloud
- Key: distance
- Element: vertex
- Locator-based methods
- insert(k,e) returns a locator
- replaceKey (l, k) changes the key of an item
- We store three labels with each vertex:
- Distance
- Parent edge in MST
- Locator in priority queue

Prim-Jarnik's Algorithm (cont.)

```
Algorithm PrimJarnikMST(G)
    Q}\leftarrow\mathrm{ new heap-based priority queue
    s}\leftarrow\mathrm{ a vertex of }\boldsymbol{G
    for all v}\in\mathrm{ G.vertices()
        if v=s
        setDistance(v, 0)
        else
            setDistance(v,\infty)
        setParent(v, \varnothing)
        l\leftarrowQ.insert(getDistance(v),v)
        setLocator(v,l)
    while }\neg\mathrm{ Q.isEmpty()
        u\leftarrowQ.removeMin()
        for all }e\inG.incidentEdges(u
            z\leftarrowG.opposite(u,e)
            r}\leftarrow\mathrm{ weight(e)
            if r<getDistance(z)
            setDistance(z,r)
            setParent(z,e)
            Q.replaceKey(getLocator(z),r)
```


Example

2012-2 학기
Weiss, Data Struct's \& Alg's

Example (contd.)

$$
2_{0}^{B-D^{2}}
$$

Kruskal's Algorithm

- Continually select the edges in order of smallest weight and accept an edge if it does not cause a cycle

Kruskal's Algorithm

Edge	Weight	Action
$\left(v_{1}, v_{4}\right)$	1	Accepted
$\left(v_{6}, v_{7}\right)$	1	Accepted
$\left(v_{1}, v_{2}\right)$	2	Accepted
$\left(v_{3}, v_{4}\right)$	2	Accepted
$\left(v_{2}, v_{4}\right)$	3	Rejected
$\left(v_{1}, v_{3}\right)$	4	Rejected
$\left(v_{4}, v_{7}\right)$	4	Accepted
$\left(v_{3}, v_{6}\right)$	5	Rejected
$\left(v_{5}, v_{7}\right)$	6	Accepted

Figure 9.56 Action of Kruskal's algorithm on G

Figure 9.57 Kruskal's algorithm after each stage

MST by Kruskal Algorithm

Kruskal algorithm

Kruskal(Graph G)

int EdgesAccepted;
DisjSet S;
PriorityQueue H;
Vertex U, V;
SetType Uset, Vset;
Edge E;

```
/* 1*/ Initialize( S );
1* 2*/
1* 3*/
ReadGraphIntoHeapArray( G, H ); BuildHeap( H );
```


Kruskal algorithm

```
/* 4*/ EdgesAccepted = 0;
/* 5*/
/* 6*/
/* 7*/
/* 8*/
/* 9*/
/*10*/
/*11*/
while( EdgesAccepted < NumVertex - 1 )
\{
    \(\mathrm{E}=\operatorname{DeleteMin}(\mathrm{H}) ; / * \mathrm{E}=(\mathrm{U}, \mathrm{V}) * /\)
    Uset \(=\) Find ( U, S );
    Vset \(=\) Find ( V, S );
    if( Uset ! = Vset )
    \{
    /* Accept the edge */
    EdgesAccepted++;
    SetUnion( S, USet, VSet );
\}
\}
\}
```


Kruskal algorithm

- A priority queue stores the edges outside the cloud
- Key: weight
- Element: edge
- At the end of the algorithm
- We are left with one cloud that encompasses the MST
- A tree T which is our MST

Kruskal algorithm II

Algorithm KruskalMST(G)

for each vertex \boldsymbol{V} in \boldsymbol{G} do

```
            define a Cloud(v) of < < v}
```

let Q be a priority queue.
Insert all edges into Q using their weights as the key $T \leftarrow \varnothing$
while \boldsymbol{T} has fewer than \boldsymbol{n}-1 edges do
edge $\boldsymbol{e}=$ T.removeMin()
Let $\boldsymbol{u}, \boldsymbol{v}$ be the endpoints of e if $\operatorname{Cloud}(v) \neq \operatorname{Cloud}(u)$ then Add edge \boldsymbol{e} to \boldsymbol{T} Merge Cloud(v) and Cloud(u) return T

Dijkstra vs. Prim-Jarnik

Algorithm DijkstraShortestPaths(G, s)

$Q \leftarrow$ new heap-based priority queue
for all $v \in$ G.vertices()
if $v=s$
setDistance $(v, 0)$
else
setDistance (v, ∞)
setParent (v, \varnothing)
$l \leftarrow$ Q.insert (getDistance(v), v)
setLocator (v,l)
while \neg Q.isEmpty()
$u \leftarrow$ Q.removeMin()
for all $e \in$ G.incidentEdges(u)
$z \leftarrow$ G.opposite (u,e)
$r \leftarrow$ getDistance $(u)+$ weight (e)
if $r<$ getDistance (z) setDistance (z, r) setParent (z,e) Q.replaceKey (getLocator(z),r)

Algorithm PrimJarnikMST(G)

$Q \leftarrow$ new heap-based priority queue
$\boldsymbol{s} \leftarrow$ a vertex of \boldsymbol{G}
for all $v \in$ G.vertices()
if $v=s$
setDistance $(v, 0)$
else
setDistance (v, ∞)
setParent (v, \varnothing)
$l \leftarrow$ Q.insert(getDistance(v), v)
setLocator(v,l)
while \neg Q.isEmpty ()
$u \leftarrow$ Q.removeMin()
for all $e \in$ G.incidentEdges(u)
$z \leftarrow$ G.opposite (u,e)
$r \leftarrow$ weight (e)
if $r<$ getDistance (z) setDistance (z, r)
setParent(z,e)
Q.replaceKey (getLocator(z),r)

Depth-First Search

- Is a generalization of preorder traversal
- Starting at some vertex v, process v and then recursively traverse all vertices adjacent to v
- For graph, be careful to avoid cycles.
=> use Visited[] flag to mark it visited.
- Give DFS Spanning Tree of the graph

```
void
Dfs( Vertex V )
{
    Visited[ V ] = True;
    for each W adjacent to V
                        if( !Visited[ W ] )
                                Dfs( W );
}
```

Figure 9.59 Template for depth-first search

Depth-First Search

Figure 9.60 An undirected graph G

Depth-First Search

Figure 9.60 DFS Spanning Tree of G

Depth-First Search

Figure 9.61 Depth-first search of previous graph

Breadth-First Search

Figure 9.60 An undirected graph G

Breadth-First Search

Figure 9.60 DFS Spanning Tree of G

Biconnectivity

- A connected undirected graph is biconnected if there are no vertices whose removal disconnects the rest of the graph
- Application domains: mail delivery on the computer network, alternate route on a mass transit system
- If a graph is not biconnected, the vertices whose removal would disconnect the graph are known as articulation points.

Biconnected Graph

Articulation Points

- If a graph is not biconnected, the vertices whose removal would disconnect the graph are known as articulation points.

Not Biconnected Graph

Removal of C and D in Figure 9.62

Finding Articulating points

- Depth-first search provides all articulation points in a connected graph in linear time.

1. Starting at any vertex, perform DPS ant number the nodes as they are visited. For each vertex v, we call this preorder number Num(v).
2. For every vertex v in the DPS spanning tree, compute the lowest-numbered vertex, Low(v) that is reachable from v by taking zero or more tree edges and them possibly one back edge (in that order)

Depth-first tree with Num \& Low

Depth-first tree starting at C


```
void
AssignNum( Vertex V )
{
    Vertex W;
/* 1*/ Num[ V ] = Counter++;
/* 2*/ Visited[ V ] = True;
/* 3*/ for each W adjacent to V
/* 4*/ if( !Visited[ W ] )
    {
        Parent[ W ] = V;
        AssignNum( W );
    }
}
```

Figure 9.65 Routine to assign Num to vertices

```
        AssignLow( Vertex V )
{
    Vertex W;
/* 1*/ Low[ V ] = Num[ V ]; /* Rule 1 */
/* 2*/ for each W adjacent to V
/* 3*/
/* 4*/
                AssignLow( W );
                if( Low[ W ] >= Num[ V ] )
                    printf( "%v is an articulation point\n", v );
            Low[ V ] = Min( Low[ V ], Low[ W ] ); /* Rule 3 %/
        }
        else
        if( Parent[ V ] != W ) /* Back edge */
        Low[ V ] = Min( Low[ V ], Num[ W ] ); /* Rule 2 */
    }
    }
```

Figure 9.66 Pseudocode to compute Low and to test for articulation points (test for the root is omitted)

FindArt (Vertex V)
Vertex W;

```
/* 1*/ Visited[ V ] = True;
/* 2*/ Low[ V ] = Num[ V ] = Counter++; /* Rule 1 */
/* 3*/ for each \(W\) adjacent to \(V\)
/* 4*/
/* 5*/
/* 6*/
/* 7*/
/* 8*/
/* 9*/
/*11*/
    if( !Visited[ W ] ) /* Forward edge */
    \{
        Parent[ W ] = V;
        FindArt( W );
        if( Low[ W ] >= Num [ V ] )
            printf( "\%v is an articulation point \(\backslash n ", ~ v ~) ; ~\)
            \(\operatorname{Low}[\mathrm{V}]=\operatorname{Min}(\operatorname{Low}[\mathrm{V}], \operatorname{Low}[\mathrm{W}]) ; / * \operatorname{Rule} 3\) */
        \}
        else
        if( Parent[ V ] != W ) /* Back edge */
            Low [ V ] = Min( Low[ V ], Num[ W ] ); /* Rule 2 */
    \}
\}
```

Figure 9.67 Testing for articulation points in one denth-first search (test for the root is

