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• In case of a graph with negative edge 
costs, Dijkstra’s algorithm does not work 

• A tempting solution is to add a constant Δ 
to each edge cost, thus removing negative 
edges  

   => Paths with more edges become more 
weighty than paths with fewer edges 

 

Graphs with negative costs 
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Dijkstra’s algorithm 
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• In case of acyclic graph, it is possible to 
improve Dijkstra’s algorithm by selecting 
vertices in topological order 

• The algorithm can be done in one pass 

• Usage 

– Modeling downhill skiing problem 

– Modeling nonreversible chemical reactions 

– Critical path analysis using activity node graph 

Acyclic Graphs 
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• Each node represents an activity that must be 
performed, along with the time it takes to 
complete the activity 

• The edge represents precedence relationships 

Activity Node Graph 
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• Construction projects 

– Earliest completion time of the project 

   (Ex) 10 time units for the path A, C, F, H 

 

– Which activities can be delayed, by how long 
without affecting the minimum completion 
time 

   (Ex) B can be delayed 2 time units 
 

Application 
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Figure 9.34 Activity-node graph 

Activity node graph 
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Figure 9.35 Event-node graph 

Event node graph 

To perform these calculations, convert the 
activity-node graph to an event –node graph 
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Graph conversion 
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• Let ECi is the earliest completion time for 
node i, then 

         EC1 = 0 

         ECw = max (v,w)∈ E (ECv + cv,w) 

 

• Let LCi is the latest completion time for 
node i, then 

         LCn = ECn 

         LCv = min (v,w)∈ E (LCw - cv,w) 

 

Earliest(Latest) Completion Time 
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Figure 9.36 Earliest completion times 

Earliest Completion Time ECi  

• EC1 = 0 

   ECw = max (v,w)∈ E (ECv + cv,w) 
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Figure 9.37 Latest completion times 

Latest Completion Time LCi 

• LCn = ECn 

   LCv = min (v,w)∈ E (LCw - cv,w) 
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• Slack time for each edge represents the 

amount of time that the completion of the 
corresponding activity can be delayed 
without delaying the overall completion.  

          

        Slack (v,w) = LCw - ECv - cv,w 

 

 

Slack Time 
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Figure 9.38 Earliest completion time, latest completion time, and slack 

Slack Time 
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• There is at least one critical path consisting 

entirely of zero-slack edges, which must finish on 

schedule 

 



• Assumes undirected and connected graph 

• A tree formed from graph edges that 
connects all the vertices of G at lowest total 
cost 

• Example in Fig. 9.48 

• No. of edges in the MST = |v| - 1 

 

Minimum Spanning Tree 
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Minimum Spanning Tree 

• Spanning subgraph 

– Subgraph of G containing all the vertices of G 

• Spanning tree 

– Spanning subgraph that is itself a tree 

• Minimum spanning tree (MST) 

– Spanning tree of a weighted graph with 
minimum total edge weight 

• Applications 

– Communications networks 

– Transportation networks 
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Minimum Spanning Tree 
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Cycle Property 

• Let T be a minimum spanning tree of a 
weighted graph G 

• Let e be an edge of G that is not in T and let 
C be the cycle formed by e with T 

• For every edge f of C, weight(f)  weight(e)  

 

    Proof by contradiction 

   If weight(f) > weight(e), we can get a spanning 
tree of smaller weight by replacing e with f 
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Cycle Property 
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Partition Property 

• Partition the vertices of G into subsets U and V 

• Let e be an edge of minimum weight across U and V 

• There is a MST of G containing edge e 

Proof: 

– Let T be an MST of G 

– If T does not contain e, consider the cycle C 
formed by e with T and let  f be an edge of C 
across the partition 

– By the cycle property,  weight(f)  weight(e)  

   Thus, weight(f) = weight(e) 

– We obtain another MST by replacing f  with e 

7 
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Partition Property 
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Minimum spanning tree 

Minimum spanning tree 

Figure 9.48 A graph G 



• Prim’s Algorithm 

– Very similar to Dijkstra’s Algorithm 

 

• Kruskal’s Algorithm 

– Continually select the edges in order of smallest 
weight and accept an edge if it does not cause a 
cycle 

Algorithms for MST 
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Figure 9.49 Prim’s algorithm after each stage 
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Figure 9.49 Prim’s algorithm after each stage 
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Figure 9.49 Prim’s algorithm after each stage 

6 
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Figure 9.49 Prim’s algorithm after each stage 
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Figure 9.49 Prim’s algorithm after each stage 



MST by Prim’s Algorithm 



Figure 9.50 Initial configuration of table used in Prim’s algorithm 

Table in Prim’s algorithm 



Figure 9.51 The table After v1 is declared known 

Figure 9.52 The table After v4 is declared known 

Table in Prim’s algorithm 



Figure 9.53 The table After v2 and then v3 are declared known 

Figure 9.54 The table After v7 is declared known 

Table in Prim’s algorithm 



Figure 9.55 The table After v6 and v5 are selected 

(Prim’s algorithm terminates) 

Table in Prim’s algorithm 



2012-2 학기 Weiss, Data Struct's & Alg's 34 

Prim-Jarnik’s Algorithm 

• We assume that the graph is connected 

• We pick an arbitrary vertex s and we grow the 
MST as a cloud of vertices, starting from s 

• We store with each vertex v a label d(v) 
representing the smallest weight of an edge 
connecting v to a vertex in the cloud  

 

• At each step 
– We add to the cloud the vertex u outside the cloud 

with the smallest distance label 

– We update the labels of the vertices adjacent to u  
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Prim-Jarnik’s Algorithm (cont.) 

• A priority queue stores the vertices outside the 
cloud 
– Key: distance 

– Element: vertex 

• Locator-based methods 
– insert(k,e) returns a locator  

– replaceKey(l,k) changes the key of an item 

• We store three labels with each vertex: 
– Distance 

– Parent edge in MST 

– Locator in priority queue 
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Prim-Jarnik’s Algorithm (cont.) 

Algorithm PrimJarnikMST(G) 
 Q  new heap-based priority queue 
 s  a vertex of G 
 for all  v  G.vertices() 
    if  v = s 
        setDistance(v, 0) 
    else  
        setDistance(v, ) 
       setParent(v, ) 
       l  Q.insert(getDistance(v), v) 

      setLocator(v,l) 
while  Q.isEmpty() 
    u  Q.removeMin()  
    for all  e  G.incidentEdges(u) 
        z  G.opposite(u,e) 
        r  weight(e) 
        if  r < getDistance(z) 
            setDistance(z,r) 
            setParent(z,e) 
             Q.replaceKey(getLocator(z),r) 
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Example 
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Example (contd.) 

B 

D 

C 

A 

F 

E 

7 

4 

2 
8 

5 

7 

3 

9 

8 

0 
3 

2 

5 4 

7 

B 

D 

C 

A 

F 

E 

7 

4 

2 
8 

5 

7 

3 

9 

8 

0 
3 

2 

5 4 

7 



• Continually select the edges in order of 
smallest weight and accept an edge if it 
does not cause a cycle 

Kruskal’s Algorithm 
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Kruskal’s Algorithm 
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Figure 9.56 Action of Kruskal’s algorithm on G 



Figure 9.57 Kruskal’s algorithm after each stage 



MST by Kruskal Algorithm 



Kruskal algorithm 



Kruskal algorithm 
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• A priority queue stores the edges outside the 
cloud 

− Key: weight 

− Element: edge 

 

• At the end of the algorithm 

− We are left with one cloud that encompasses 
the MST 

− A tree T which is our MST 

Kruskal algorithm 
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Algorithm KruskalMST(G) 
   for each vertex V in G do 
       define a Cloud(v) of  {v} 
   let Q be a priority queue. 
   Insert all edges into Q using their  weights as the key 
   T    
   while T has fewer than n-1 edges do     
           edge e = T.removeMin() 
       Let u, v be the endpoints of e 
       if Cloud(v)  Cloud(u) then 
          Add edge e to T 
          Merge Cloud(v) and Cloud(u) 
         return T 

Kruskal algorithm II 
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Dijkstra vs. Prim-Jarnik 

Algorithm PrimJarnikMST(G) 
 Q  new heap-based priority queue 
 s  a vertex of G 
 for all  v  G.vertices() 
  if  v = s 
   setDistance(v, 0) 
  else  
   setDistance(v, ) 
  setParent(v, ) 
  l  Q.insert(getDistance(v), v) 

 setLocator(v,l) 
while  Q.isEmpty() 
 u  Q.removeMin()  
 for all  e  G.incidentEdges(u) 
  z  G.opposite(u,e) 
  r  weight(e) 
  if  r < getDistance(z) 
   setDistance(z,r) 
   setParent(z,e) 
    Q.replaceKey(getLocator(z),r) 

Algorithm DijkstraShortestPaths(G, s) 
 Q  new heap-based priority queue 
  
 for all  v  G.vertices() 
  if  v = s 
   setDistance(v, 0) 
  else  
   setDistance(v, ) 
   setParent(v, )  
  l  Q.insert(getDistance(v), v) 

 setLocator(v,l) 
while  Q.isEmpty() 
 u  Q.removeMin()  
 for all  e  G.incidentEdges(u) 
  z  G.opposite(u,e) 
  r  getDistance(u) + weight(e) 
  if  r < getDistance(z) 
   setDistance(z,r) 
   setParent(z,e) 
    Q.replaceKey(getLocator(z),r) 



• Is a generalization of preorder traversal 

• Starting at some vertex v, process v and 

then recursively traverse all vertices 
adjacent to v 

• For graph, be careful to avoid cycles. 

   => use Visited[ ] flag to mark it visited. 

• Give DFS Spanning Tree of the graph 

Depth-First Search 
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Figure 9.60 An undirected graph G 

Depth-First Search 



Figure 9.60 DFS Spanning Tree of G 

Depth-First Search 



Figure 9.61 Depth-first search of previous graph 

Depth-First Search 



Figure 9.60 An undirected graph G 

Breadth-First Search 



Figure 9.60 DFS Spanning Tree of G 

Breadth-First Search 



• A connected undirected graph is biconnected if 
there are no vertices whose removal disconnects 
the rest of the graph 

• Application domains: mail delivery on the 
computer network, alternate route on a mass 
transit system 

• If a graph is not biconnected, the vertices whose 
removal would disconnect the graph are known 
as articulation points. 

Biconnectivity 
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Biconnected Graph 
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• If a graph is not biconnected, the vertices whose 
removal would disconnect the graph are known 
as articulation points. 

Articulation Points 
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Figure 9.62 A graph with articulation 

points C and D 



Removal of C and D in Figure 9.62 

Not Biconnected Graph 



• Depth-first search provides all articulation points in 
a connected graph in linear time. 

 

1. Starting at any vertex, perform DPS ant number the 
nodes as they are visited. For each vertex v, we 
call this preorder number Num(v). 

2. For every vertex v in the DPS spanning tree, 
compute the lowest-numbered vertex, Low(v) that 
is reachable from v by taking zero or more tree 
edges and them possibly one back edge (in that 
order) 

Finding Articulating points 
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Depth-first tree with Num & Low 



Depth-first tree starting at C 








