

School of Electrical Engineering

Korea University

Data Structures and Algorithms

- Graph 2 -

2014-02-05 Weiss, Data Structures & Alg's 1

• In case of a graph with negative edge
costs, Dijkstra’s algorithm does not work

• A tempting solution is to add a constant Δ
to each edge cost, thus removing negative
edges

 => Paths with more edges become more
weighty than paths with fewer edges

Graphs with negative costs

2014-02-05 Weiss, Data Structures & Alg's 2

Dijkstra’s algorithm

2014-02-05 Weiss, Data Structures & Alg's 3

• In case of acyclic graph, it is possible to
improve Dijkstra’s algorithm by selecting
vertices in topological order

• The algorithm can be done in one pass

• Usage

– Modeling downhill skiing problem

– Modeling nonreversible chemical reactions

– Critical path analysis using activity node graph

Acyclic Graphs

2014-02-05 Weiss, Data Structures & Alg's 4

• Each node represents an activity that must be
performed, along with the time it takes to
complete the activity

• The edge represents precedence relationships

Activity Node Graph

2014-02-05 Weiss, Data Structures & Alg's 5

• Construction projects

– Earliest completion time of the project

 (Ex) 10 time units for the path A, C, F, H

– Which activities can be delayed, by how long
without affecting the minimum completion
time

 (Ex) B can be delayed 2 time units

Application

2014-02-05 Weiss, Data Structures & Alg's 6

Figure 9.34 Activity-node graph

Activity node graph

2014-02-05 Weiss, Data Structures & Alg's 7

Figure 9.35 Event-node graph

Event node graph

To perform these calculations, convert the
activity-node graph to an event –node graph

2014-02-05 Weiss, Data Structures & Alg's 8

Graph conversion

2014-02-05 Weiss, Data Structures & Alg's 9

• Let ECi is the earliest completion time for
node i, then

 EC1 = 0

 ECw = max (v,w)∈ E (ECv + cv,w)

• Let LCi is the latest completion time for
node i, then

 LCn = ECn

 LCv = min (v,w)∈ E (LCw - cv,w)

Earliest(Latest) Completion Time

2014-02-05 Weiss, Data Structures & Alg's 10

Figure 9.36 Earliest completion times

Earliest Completion Time ECi

• EC1 = 0

 ECw = max (v,w)∈ E (ECv + cv,w)

2014-02-05 Weiss, Data Structures & Alg's 11

Figure 9.37 Latest completion times

Latest Completion Time LCi

• LCn = ECn

 LCv = min (v,w)∈ E (LCw - cv,w)

2014-02-05 Weiss, Data Structures & Alg's 12

• Slack time for each edge represents the

amount of time that the completion of the
corresponding activity can be delayed
without delaying the overall completion.

 Slack (v,w) = LCw - ECv - cv,w

Slack Time

2014-02-05 Weiss, Data Structures & Alg's 13

Figure 9.38 Earliest completion time, latest completion time, and slack

Slack Time

2014-02-05 Weiss, Data Structures & Alg's 14

• There is at least one critical path consisting

entirely of zero-slack edges, which must finish on

schedule

• Assumes undirected and connected graph

• A tree formed from graph edges that
connects all the vertices of G at lowest total
cost

• Example in Fig. 9.48

• No. of edges in the MST = |v| - 1

Minimum Spanning Tree

2014-02-05 Weiss, Data Structures & Alg's 15

2012-2 학기 Weiss, Data Struct's & Alg's 16

Minimum Spanning Tree

• Spanning subgraph

– Subgraph of G containing all the vertices of G

• Spanning tree

– Spanning subgraph that is itself a tree

• Minimum spanning tree (MST)

– Spanning tree of a weighted graph with
minimum total edge weight

• Applications

– Communications networks

– Transportation networks

2012-2 학기 Weiss, Data Struct's & Alg's 17

Minimum Spanning Tree

ORD

PIT

ATL

STL

DEN

DFW

DCA

10
1

9

8

6

3

2 5

7

4

2012-2 학기 Weiss, Data Struct's & Alg's 18

Cycle Property

• Let T be a minimum spanning tree of a
weighted graph G

• Let e be an edge of G that is not in T and let
C be the cycle formed by e with T

• For every edge f of C, weight(f)  weight(e)

 Proof by contradiction

 If weight(f) > weight(e), we can get a spanning
tree of smaller weight by replacing e with f

2012-2 학기 Weiss, Data Struct's & Alg's 19

Cycle Property

8

4

2
3

6

7

7

9

8

e

C

f

8

4

2
3

6

7

7

9

8

C

e

f

Replacing f with e yields

a better spanning tree

2012-2 학기 Weiss, Data Struct's & Alg's 20

Partition Property

• Partition the vertices of G into subsets U and V

• Let e be an edge of minimum weight across U and V

• There is a MST of G containing edge e

Proof:

– Let T be an MST of G

– If T does not contain e, consider the cycle C
formed by e with T and let f be an edge of C
across the partition

– By the cycle property, weight(f)  weight(e)

 Thus, weight(f) = weight(e)

– We obtain another MST by replacing f with e

7

2012-2 학기 Weiss, Data Struct's & Alg's 21

Partition Property

U V
7

4

2
8

5

7

3

9

8 e

f

Replacing f with e yields

another MST

7

4

2
8

5

7

3

9

8 e

f
U V

Minimum spanning tree

Minimum spanning tree

Figure 9.48 A graph G

• Prim’s Algorithm

– Very similar to Dijkstra’s Algorithm

• Kruskal’s Algorithm

– Continually select the edges in order of smallest
weight and accept an edge if it does not cause a
cycle

Algorithms for MST

2014-02-05 Weiss, Data Structures & Alg's 23

2014-02-05 Weiss, Data Structures & Alg's 24

Figure 9.49 Prim’s algorithm after each stage

2014-02-05 Weiss, Data Structures & Alg's 25

Figure 9.49 Prim’s algorithm after each stage

2014-02-05 Weiss, Data Structures & Alg's 26

Figure 9.49 Prim’s algorithm after each stage

6

2014-02-05 Weiss, Data Structures & Alg's 27

Figure 9.49 Prim’s algorithm after each stage

2014-02-05 Weiss, Data Structures & Alg's 28

Figure 9.49 Prim’s algorithm after each stage

MST by Prim’s Algorithm

Figure 9.50 Initial configuration of table used in Prim’s algorithm

Table in Prim’s algorithm

Figure 9.51 The table After v1 is declared known

Figure 9.52 The table After v4 is declared known

Table in Prim’s algorithm

Figure 9.53 The table After v2 and then v3 are declared known

Figure 9.54 The table After v7 is declared known

Table in Prim’s algorithm

Figure 9.55 The table After v6 and v5 are selected

(Prim’s algorithm terminates)

Table in Prim’s algorithm

2012-2 학기 Weiss, Data Struct's & Alg's 34

Prim-Jarnik’s Algorithm

• We assume that the graph is connected

• We pick an arbitrary vertex s and we grow the
MST as a cloud of vertices, starting from s

• We store with each vertex v a label d(v)
representing the smallest weight of an edge
connecting v to a vertex in the cloud

• At each step
– We add to the cloud the vertex u outside the cloud

with the smallest distance label

– We update the labels of the vertices adjacent to u

2012-2 학기 Weiss, Data Struct's & Alg's 35

Prim-Jarnik’s Algorithm (cont.)

• A priority queue stores the vertices outside the
cloud
– Key: distance

– Element: vertex

• Locator-based methods
– insert(k,e) returns a locator

– replaceKey(l,k) changes the key of an item

• We store three labels with each vertex:
– Distance

– Parent edge in MST

– Locator in priority queue

2012-2 학기 Weiss, Data Struct's & Alg's 36

Prim-Jarnik’s Algorithm (cont.)

Algorithm PrimJarnikMST(G)
 Q  new heap-based priority queue
 s  a vertex of G
 for all v  G.vertices()
 if v = s
 setDistance(v, 0)
 else
 setDistance(v, )
 setParent(v, )
 l  Q.insert(getDistance(v), v)

 setLocator(v,l)
while Q.isEmpty()
 u  Q.removeMin()
 for all e  G.incidentEdges(u)
 z  G.opposite(u,e)
 r  weight(e)
 if r < getDistance(z)
 setDistance(z,r)
 setParent(z,e)
 Q.replaceKey(getLocator(z),r)

2012-2 학기 Weiss, Data Struct's & Alg's 37

Example

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
7

2

8 



B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
7

2

5 

7

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
7

2

5 

7

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
7

2

5 4

7

2012-2 학기 Weiss, Data Struct's & Alg's 38

Example (contd.)

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
3

2

5 4

7

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
3

2

5 4

7

• Continually select the edges in order of
smallest weight and accept an edge if it
does not cause a cycle

Kruskal’s Algorithm

2014-02-05 Weiss, Data Structures & Alg's 39

Kruskal’s Algorithm

2014-02-05 Weiss, Data Structures & Alg's 40

Figure 9.56 Action of Kruskal’s algorithm on G

Figure 9.57 Kruskal’s algorithm after each stage

MST by Kruskal Algorithm

Kruskal algorithm

Kruskal algorithm

2012-2 학기 Weiss, Data Struct's & Alg's 45

• A priority queue stores the edges outside the
cloud

− Key: weight

− Element: edge

• At the end of the algorithm

− We are left with one cloud that encompasses
the MST

− A tree T which is our MST

Kruskal algorithm

2012-2 학기 Weiss, Data Struct's & Alg's 46

Algorithm KruskalMST(G)
 for each vertex V in G do
 define a Cloud(v) of  {v}
 let Q be a priority queue.
 Insert all edges into Q using their weights as the key
 T  
 while T has fewer than n-1 edges do
 edge e = T.removeMin()
 Let u, v be the endpoints of e
 if Cloud(v)  Cloud(u) then
 Add edge e to T
 Merge Cloud(v) and Cloud(u)
 return T

Kruskal algorithm II

2012-2 학기 Weiss, Data Struct's & Alg's 47

Dijkstra vs. Prim-Jarnik

Algorithm PrimJarnikMST(G)
 Q  new heap-based priority queue
 s  a vertex of G
 for all v  G.vertices()
 if v = s
 setDistance(v, 0)
 else
 setDistance(v, )
 setParent(v, )
 l  Q.insert(getDistance(v), v)

 setLocator(v,l)
while Q.isEmpty()
 u  Q.removeMin()
 for all e  G.incidentEdges(u)
 z  G.opposite(u,e)
 r  weight(e)
 if r < getDistance(z)
 setDistance(z,r)
 setParent(z,e)
 Q.replaceKey(getLocator(z),r)

Algorithm DijkstraShortestPaths(G, s)
 Q  new heap-based priority queue

 for all v  G.vertices()
 if v = s
 setDistance(v, 0)
 else
 setDistance(v, )
 setParent(v, )
 l  Q.insert(getDistance(v), v)

 setLocator(v,l)
while Q.isEmpty()
 u  Q.removeMin()
 for all e  G.incidentEdges(u)
 z  G.opposite(u,e)
 r  getDistance(u) + weight(e)
 if r < getDistance(z)
 setDistance(z,r)
 setParent(z,e)
 Q.replaceKey(getLocator(z),r)

• Is a generalization of preorder traversal

• Starting at some vertex v, process v and

then recursively traverse all vertices
adjacent to v

• For graph, be careful to avoid cycles.

 => use Visited[] flag to mark it visited.

• Give DFS Spanning Tree of the graph

Depth-First Search

2014-02-05 Weiss, Data Structures & Alg's 48

Figure 9.60 An undirected graph G

Depth-First Search

Figure 9.60 DFS Spanning Tree of G

Depth-First Search

Figure 9.61 Depth-first search of previous graph

Depth-First Search

Figure 9.60 An undirected graph G

Breadth-First Search

Figure 9.60 DFS Spanning Tree of G

Breadth-First Search

• A connected undirected graph is biconnected if
there are no vertices whose removal disconnects
the rest of the graph

• Application domains: mail delivery on the
computer network, alternate route on a mass
transit system

• If a graph is not biconnected, the vertices whose
removal would disconnect the graph are known
as articulation points.

Biconnectivity

2014-02-05 Weiss, Data Structures & Alg's 55

Biconnected Graph

2014-02-05 Weiss, Data Structures & Alg's 56

• If a graph is not biconnected, the vertices whose
removal would disconnect the graph are known
as articulation points.

Articulation Points

2014-02-05 Weiss, Data Structures & Alg's 57

Figure 9.62 A graph with articulation

points C and D

Removal of C and D in Figure 9.62

Not Biconnected Graph

• Depth-first search provides all articulation points in
a connected graph in linear time.

1. Starting at any vertex, perform DPS ant number the
nodes as they are visited. For each vertex v, we
call this preorder number Num(v).

2. For every vertex v in the DPS spanning tree,
compute the lowest-numbered vertex, Low(v) that
is reachable from v by taking zero or more tree
edges and them possibly one back edge (in that
order)

Finding Articulating points

2014-02-05 Weiss, Data Structures & Alg's 59

Depth-first tree with Num & Low

Depth-first tree starting at C

