#### **Data Structures and Algorithms**

- Graph 1 -

#### School of Electrical Engineering Korea University

## Graph

- A graph is a pair (V, E), where
  - V is a set of nodes, called vertices
  - -E is a collection of pairs of vertices, called edges
- Each edge is a pair (v, w), where  $v, w \in V$

## Graph - Example

- A vertex represents an airport and stores the three-letter airport code
- An edge represents a flight route between two airports and stores the mileage of the route



### Graphs-Terminology

- The vertex pair is *ordered* (*unordered*), then the graph is *directed* (*undirected*)
- Vertex w is *adjacent* to v if and only if  $(v, w) \in E$
- An edge could have a weight or a cost
- A *path* (simple path) is a sequence of vertices  $w_1, w_2, \dots, w_N$  s.t.  $(w_i, w_{i+1}) \in E$  for all  $1 \le i < N$
- *Path length* is the number of edges
- Cycle in a directed graph

## Edge Types

- Directed edge
  - ordered pair of vertices (v,w)
  - first vertex v is the origin
  - second vertex w is the destination
  - e.g., a flight
- Directed graph (=digraph)
  - all the edges are directed as in route network





## Edge Types

- Undirected edge
  - unordered pair of vertices (u,v)
  - e.g., a flight route
- Undirected graph
  - all the edges are undirected
  - e.g., flight network



## Applications

- Electronic circuits
  - Printed circuit board
  - Integrated circuit
- Transportation networks
  - Highway network
  - Flight network
- Computer networks
  - Local area network
  - Internet
  - Web
- Databases
  - Entity-relationship diagram



#### Terminology(cont.)

- An undirected graph is *connected* if there is a path from every vertex to every other vertex
- A directed graph with this property is *strongly* connected
- If not strongly connected, but connected, then the graph is *weakly connected*
- A complete graph is a graph in which there is an edge between every pair of vertices

## Terminology(cont.)

- Edges incident on a vertex
  - a, d, and b are incident on V
- Adjacent vertices
  - U and V are adjacent
- Degree of a vertex
  - Total no.of edges
  - X has degree 5



#### Example

- P<sub>1</sub>=(V,b,X,h,Z) is a simple path
- P<sub>2</sub>=(U,W,X,Y,W,V) is not simple



## Terminology (cont.)

- Cycle
  - circular sequence of alternating vertices and edges
  - each edge is preceded and followed by its endpoint
- Simple cycle
  - cycle such that all its vertices and edges are distinct

#### Example

- C<sub>1</sub>=(V,X,Y,W,U,V) is a simple cycle
- C<sub>2</sub>=(U,W,X,Y,W,V,U) is a cycle that is not simple



# Properties



## Graph representation

- Adjacency matrix representation
  - ✓ Simple
  - ✓ Appropriate when the graph is dense
  - $\checkmark |E| = \Theta(|V|^2)$
- Adjacency list representation
  - $\checkmark$  When the graph is sparse
  - ✓ Space requirement is O(|E| + |V|)

# Graph representation



# Graph representation



|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|
| 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| 3 |   |   |   |   |   |   |   |
| 4 |   |   |   |   |   |   |   |
| 5 |   |   |   |   |   |   |   |
| 6 |   |   |   |   |   |   |   |
| 7 |   |   |   |   |   |   |   |

Adjacency matrix

#### **Topological Sort**

- An ordering of vertices in a directed acyclic graph such that
  - if there exists a path from  $v_i$  to  $v_{j,}$   $v_i$  appears before  $v_j$  in the ordering
  - For a graph with cycle → no topological ordering

# Prerequisite graph



Figure 9.3 An acyclic graph representing course prerequisite structure

# **Topological ordering**



# Simple topological sort algorithm

```
Topsort(Graph G)
    int Counter:
    Vertex V, W;
    for( Counter = 0; Counter < NumVertex; Counter++ )</pre>
        V = FindNewVertexOfDegreeZero(); // sequential scan
        if ( V == NotAVertex )
            Error( "Graph has a cycle" );
            break;
        TopNum[ V ] = Counter;
        for each W adjacent to V
            Indegree[ W ]--;
```

#### Better topological sort algorithm

```
Topsort( Graph G );
            Queue Q;
            int Counter = 0;
            Vertex V, W;
/* 1*/
            Q = CreateQueue( NumVertex ); MakeEmpty( Q );
/* 2*/
            for each vertex V
/* 3*/
                if( Indegree[ V ] == 0 )
/* 4*/
                    Enqueue( V, Q );
/* 5*/
            while( !IsEmpty( Q ) )
/* 6*/
                V = Dequeue(Q);
                TopNum[ V ] = ++Counter; /*Assign next number */
/* 7*/
/* 8*/
                for each W adjacent to V
/* 9*/
                    if( --Indegree[ W ] == 0 )
/*10*/
                        Enqueue( W, Q );
/*11*/
            if ( Counter != NumVertex )
/*12*/
                Error( "Graph has a cycle" );
/*13*/
           DisposeQueue( Q ); /* Free the memory */
```

# **Topological sort**

 $v_4$ 

 $v_2$ 

 $v_5$ 

 $v_1$ 

 $v_6$ 

 $v_3$ 

Figure 9.6 Result of applying topological sort to the graph in Figure 9.4

|               |                |       | In    | degree | Befor | e Dequeu       | e #   |       |
|---------------|----------------|-------|-------|--------|-------|----------------|-------|-------|
| N-            | Vertex         | 1     | 2     | 3      | 4     | 5              | 6     | 7     |
| $\mathcal{I}$ | v <sub>1</sub> | 0     | 0     | 0      | 0     | 0              | 0     | 0     |
|               | v <sub>2</sub> | 1     | 0     | 0      | 0     | 0              | 0     | 0     |
|               | v <sub>3</sub> | 2     | 1     | 1      | 1     | 0              | 0     | 0     |
|               | $v_4$          | 3     | 2     | 1      | 0     | 0              | 0     | 0     |
|               | $v_5$          | 1     | 1     | 0      | 0     | 0              | 0     | 0     |
|               | $v_6$          | 3     | 3     | 3      | 3     | 2              | 1     | 0     |
|               | $v_7$          | 2     | 2     | 2      | 1     | 0              | 0     | 0     |
|               | Enqueue        | $v_1$ | $v_2$ | $v_5$  | $v_4$ | $v_3, v_7$     |       | $v_6$ |
|               | Dequeue        | $v_1$ | $v_2$ | $v_5$  | $v_4$ | v <sub>3</sub> | $v_7$ | $v_6$ |

#### Example again.



Weiss, Data Structures & Alg's

#### Shortest Path Algorithm

- Let's view a graph as the highway structure of a state or country with vertices representing cities and edges representing sections of highway.
- The edges are assigned weights which might be the distance between the two cities connected by the edge or the average time to drive the edge
  - 1. Is there a path from A to B?
  - 2. If there is more than one path from A to B, which is the shortest path?

#### Shortest-Path Algorithms

- The input is a weighted graph: associated with each edge  $(v_i, v_j)$  is a cost  $c_{i,j}$  to traverse the edge.
- The cost of a path  $v_1v_2\cdots v_N$  is  $\sum_{i,i+1}^{N-1} c_{i,i+1}$

#### Single-Source Shortest Path Problem :

Given as input (i) a weighted graph G, and (ii) a distinguished vertex s, find the shortest weighted path from s to every other vertex in G

## Example

• Which is the shortest path from  $v_1$  to  $v_6$ ?



Figure 9.8 A directed graph G

# Graph with negative cost cycle

• Same question on the nodes  $v_5$  to  $v_4$ ?



Figure 9.9 A graph with a negative-cost cycle

#### Four different versions

- 1. Unweighted shortest path problem
- 2. Weighted shortest path problem for graphs with no negative edges
- 3. Weighted shortest path problem for graphs with negative edges
- 4. Weighted problem for the special case of acyclic graphs

# Unweighted shortest path

- Edge has no weight
- Special case of weighted shortest path



Figure 9.10 An unweighted directed graph G









# Graph

- $d_v$ : distance from s
- $p_v$ : actual paths

| v     | Known | $d_v$    | $p_v$ |
|-------|-------|----------|-------|
| $v_1$ | 0     | 8        | 0     |
| $v_2$ | 0     | $\infty$ | 0     |
| $v_3$ | 0     | 0        | 0     |
| $v_4$ | 0     | $\infty$ | 0     |
| $v_5$ | 0     | $\infty$ | 0     |
| $v_6$ | 0     | $\infty$ | 0     |
| $v_7$ | 0     | $\infty$ | 0     |

Figure 9.15 Initial configuration of table used in unweighted shortest-path computation

# Draft Algorithm

```
Unweighted(Table T) /* Assume T is initialized */
            int CurrDist;
            Vertex V, W;
/* 1*/
            for( CurrDist = 0; CurrDist < NumVertex; CurrDist++ )</pre>
                for each vertex V
/* 2*/
/* 3*/
                    if ( !T[ V ].Known && T[ V ].Dist == CurrDist )
                        T[V].Known = True;
/* 4*/
/* 5*/
                        for each W adjacent to V
/* 6*/
                            if( T[ W ].Dist == Infinity )
                                T[W].Dist = CurrDist + 1;
/* 7*/
/* 8*/
                                T[W].Path = V;
```

## Analysis on Draft Algorithm

- The running time is O(|V|<sup>2</sup>) due to the doubly nested *for* loops in the algorithm
- The outside loop continues to the end even if all the vertices become known much earlier.
- Extra test to avoid this does not affect the worst-case running time, for instance for the next graph
- Possible solution is using queue (its algorithm on the next slide)

#### Bad case $\nu_{g}$ $\nu_8$ $\nu_7$ $\nu_{6}$ $\nu_5$ $\mathcal{V}_{\mathbf{A}}$ $\nu_3$

Figure 9.17 A bad case for unweighted shortest-path algorithm using Fig 9.16

 $\nu_2$ 

 $\nu_{1}$ 

```
Unweighted( Table T ) /* Assume T is initialized (Fig 9.30)
            Queue Q;
            Vertex V, W;
/* 1*/ Q = CreateQueue( NumVertex ); MakeEmpty( Q );
            /* Enqueue the start vertex S, determined elsewhere */
/* 2*/
           Enqueue( S, Q );
/* 3*/
            while( !IsEmpty( Q ) )
/* 4*/
               V = Dequeue(Q);
/* 5*/
                T[ V ].Known = True; /* Not really needed anymore *
/* 6*/
                for each W adjacent to V
/* 7*/
                    if( T[ W ].Dist == Infinity )
/* 8*/
                        T[W].Dist = T[V].Dist + 1;
/* 9*/
                        T[W].Path = V;
/*10*/
                        Enqueue( W, Q );
            DisposeQueue( Q ); /* Free the memory */
/*11*/
```

# **Tracing Execution**

|                | Initi | ial State      | v <sub>3</sub> Dequeued |       |                                 | $v_1 D$        | equeued        | 1                                 | v <sub>6</sub> Dequeued |                |                |                |
|----------------|-------|----------------|-------------------------|-------|---------------------------------|----------------|----------------|-----------------------------------|-------------------------|----------------|----------------|----------------|
| ν              | known | $d_v$          | $p_{\nu}$               | known | $d_v$                           | $p_{v}$        | known          | $d_v$                             | $p_{\nu}$               | known          | d <sub>v</sub> | p <sub>v</sub> |
| v <sub>1</sub> | F     | $\infty$       | 0                       | F     | (1)                             | v <sub>3</sub> | Т              | 1                                 | v <sub>3</sub>          | Т              | 1              | v <sub>3</sub> |
| v <sub>2</sub> | F     | $\infty$       | 0                       | F     | $\infty$                        | 0              | F              | (2)                               | $v_1$                   | F              | 2              | $v_1$          |
| v <sub>3</sub> | F     | (0)            | 0                       | Т     | 0                               | 0              | Т              | 0                                 | 0                       | Т              | 0              | 0              |
| $v_4$          | F     | $\infty$       | 0                       | F     | $\infty$                        | 0              | F              | (2)                               | $v_1$                   | F              | 2              | $v_1$          |
| $v_5$          | F     | $\infty$       | 0                       | F     | $\infty$                        | 0              | F              | $\infty$                          | 0                       | F              | $\infty$       | 0              |
| v <sub>6</sub> | F     | $\infty$       | 0                       | F     | (1)                             | v <sub>3</sub> | F              | 1                                 | v <sub>3</sub>          | Т              | 1              | v <sub>3</sub> |
| $v_7$          | F     | $\infty$       | 0                       | F     | $\infty$                        | 0              | F              | $\infty$                          | 0                       | F              | $\infty$       | 0              |
| Q:             |       | v <sub>3</sub> |                         | ν     | ν <sub>1</sub> , ν <sub>6</sub> |                | v <sub>6</sub> | , v <sub>2</sub> , v <sub>4</sub> |                         | v <sub>2</sub> | 2, V4          |                |

Figure 9.19 How the data changes during the unweighted SPA

# **Tracing Execution**

|                | v <sub>2</sub> Dequeued |               |                | v <sub>4</sub> Dequeued |                   |                | v <sub>5</sub> De | equeue         | d              | v7 Dequeued |         |                |  |
|----------------|-------------------------|---------------|----------------|-------------------------|-------------------|----------------|-------------------|----------------|----------------|-------------|---------|----------------|--|
| ν              | known                   | $d_{v}$       | pν             | known                   | $d_{v}$           | $p_{v}$        | known             | $d_{v}$        | $p_{\nu}$      | known       | $d_{v}$ | p <sub>v</sub> |  |
| $v_1$          | Т                       | 1             | v <sub>3</sub> | Т                       | 1                 | v <sub>3</sub> | Т                 | 1              | v <sub>3</sub> | Т           | 1       | v <sub>3</sub> |  |
| $v_2$          | Т                       | 2             | $v_1$          | Т                       | 2                 | $v_1$          | Т                 | 2              | $v_1$          | Т           | 2       | $v_1$          |  |
| v <sub>3</sub> | Т                       | 0             | 0              | Т                       | 0                 | 0              | Т                 | 0              | 0              | Т           | 0       | 0              |  |
| $v_4$          | F                       | 2             | $v_1$          | Т                       | 2                 | $v_1$          | Т                 | 2              | $v_1$          | Т           | 2       | $v_1$          |  |
| $v_5$          | F                       | (3)           | v <sub>2</sub> | F                       | 3                 | $v_2$          | Т                 | 3              | $v_2$          | Т           | 3       | $v_2$          |  |
| v <sub>6</sub> | Т                       | 1             | v <sub>3</sub> | Т                       | 1                 | v <sub>3</sub> | Т                 | 1              | v <sub>3</sub> | Т           | 1       | v <sub>3</sub> |  |
| $v_7$          | F                       | $\infty$      | 0              | F                       | (3)               | $v_4$          | F                 | 3              | $v_4$          | Т           | 3       | $v_4$          |  |
| Q:             | ν                       | $_{4}, v_{5}$ |                | ν                       | 5, V <sub>7</sub> |                |                   | v <sub>7</sub> |                | ei          | empty   |                |  |

Figure 9.19 How the data changes during the unweighted SPA

#### Weighted Shortest Path

- Using Dijkstra's Algorithm
- For single-source shortest path problem
- Example of Greedy Algorithm: By solving a problem in stages by doing what appears to be the best thing at each stage
- Greedy algorithms do not always work

#### Dijkstra's Algorithm

- The distance of a vertex v from a vertex s is the length of a shortest path between s and v
- Dijkstra's algorithm computes the distances of all the vertices from a given start vertex s
- Assumptions:
  - the graph is connected
  - the edges are undirected
  - the edge weights are nonnegative

### Dijkstra's Algorithm

- We grow a "cloud" of vertices, beginning with s and eventually covering all the vertices
- We store with each vertex v a label representing the distance of v from s in the subgraph consisting of the cloud and its adjacent vertices
- At each step
  - We add to the cloud the vertex *u* outside the cloud with the smallest distance label
  - We update the labels of the vertices adjacent to u

### Edge Relaxation

- Consider an edge e = (u,z) such that
  - *u* is the vertex most recently added to the cloud
  - -z is not in the cloud
- The relaxation of edge *e* updates distance *d*(*z*) as follows
  - $d(z) \leftarrow \min(d(z), d(u) + weight(e))$





Weiss, Data Struct's & Alg's

# Example (cont.)



Weiss, Data Struct's & Alg's



If  $v \in S$ , Best(v) is the length of the shortest path between source and v

If  $v \in S$ , Best(v) is the length of the shortest path between source and v when using only the vertices in S as intermediate vertices

Weiss, Data Structures & Alg's



Weiss, Data Structures & Alg's

### Dijkstra's algorithm

 $S = \Phi$ ; Best[1] = 0; Best[all the other vertices] =  $\infty$ ;

BuildHeap(v) for each vertex v with value Best[v];

while S has fewer than n nodes do {

- 1) Select the vertex *i* with the smallest Best[*i*] in V-S ;
- 2)  $S \leftarrow S \cup \{i\}$ ;

```
3) for each vertex j in V-S adjacent to i
```

```
If Best[j] > Best[i] + C[i, j] 

Best[j] = Best[i] + C[i, j] ;
```

$$P[j] = i$$









|        |      | S |    |    |    |           |                     |       | V-S      | 5        |          |          |
|--------|------|---|----|----|----|-----------|---------------------|-------|----------|----------|----------|----------|
| Step 1 |      | Φ |    |    |    |           |                     | 1     | 2        | 3        | 4        | 5        |
|        | Best |   |    |    |    |           | Best                | 0     | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| Step 2 |      | 1 | 1  |    |    |           | · · · · · · · · · · |       | 2        | 3        | 4        | 5        |
|        | Best | 0 |    |    |    |           | Best                |       | 10       | $\infty$ | 30       | 100      |
|        | р    | - |    |    |    |           | р                   |       | 1        | -        | 1        | 1        |
| Step 3 | ,    | 1 | 2  |    |    |           | <u></u>             |       |          | 3        | 4        | 5        |
|        | Best | 0 | 10 |    |    |           | Best                |       |          | 60       | 30       | 100      |
|        | р    | - | 1  |    |    |           | р                   |       |          | 2        | 1        | 1        |
| Step 4 | ,    | 1 | 2  | 4  |    |           |                     | · · · |          | 3        |          | 5        |
|        | Best | 0 | 10 | 30 |    |           | Best                |       |          | 50       |          | 90       |
|        | р    | - | 1  | 1  |    |           | р                   |       |          | 4        |          | 4        |
| Step 5 |      | 1 | 2  | 4  | 3  | · · · · · |                     |       |          |          |          | 5        |
| _      | Best | 0 | 10 | 30 | 50 |           | Best                |       |          |          |          | 60       |
|        | р    | - | 1  | 1  | 4  |           | р                   |       |          |          |          | 3        |
| Step 6 |      | 1 | 2  | 4  | 3  | 5         |                     |       |          |          |          |          |
|        | Best | 0 | 10 | 30 | 50 | 60        |                     |       |          |          |          |          |
|        | р    | - | 1  | 1  | 4  | 3         |                     |       |          |          |          |          |

Weiss, Data Structures & Alg's















## Stages of Dijkestra's algorithm









## Stages of Dijkstra's algorithm









## **Table Structure**

```
typedef int Vertex;
struct TableEntry
   List Header; /* Adjacency list */
   int
            Known;
   DistType Dist;
   Vertex Path;
};
/* Vertices are numbered from 0 */
#define NotAVertex (-1)
typedef struct TableEntry Table[ NumVertex ];
```

## Table Initializer

```
void
        InitTable( Vertex Start, Graph G, Table T )
            int i:
            ReadGraph(G, T); /* Read graph somehow */
/* 1*/
/* 2*/
            for(i = 0; i < NumVertex; i++)
               T[ i ].Known = False;
/* 3*/
               T[ i ].Dist = Infinity;
/* 4*/
/* 5*/
               T[ i ].Path = NotAVertex;
/* 6*/
          T[ Start ].dist = 0;
```

# Path Printing Algorithm

```
/* Print shortest path to V after Dijkstra has run */
/* Assume that the path exists */
void
PrintPath( Vertex V, Table T )
   if( T[ V ].Path != NotAVertex )
        PrintPath( T[ V ].Path, T );
        printf( " to" );
    printf( "%v", V ); /* %v is pseudocode */
```

# Dijkstra's algorithm

```
Dijkstra( Table T )
            Vertex V, W;
/* 1*/
           for(;;)
               V = smallest unknown distance vertex:
/* 2*/
/* 3*/
               if( V == NotAVertex )
                    break;
/* 4*/
/* 5*/
            T[V].Known = True;
               for each W adjacent to V
/* 6*/
                    if( !T[ W ].Known )
/* 7*/
                        if( T[ V ].Dist + Cvw < T[ W ].Dist )</pre>
/* 8*/
                        { /* Update W */
                            Decrease( T[ W ].Dist to
/* 9*/
                                     T[V].Dist + Cvw);
                            T[W].Path = V;
/*10*/
```

# Dijkstra's algorithm

```
WeightedNegative( Table T )
            Queue Q:
            Vertex V, W;
/* 1*/
           Q = CreateQueue( NumVertex ); MakeEmpty( Q );
/* 2*/
            Enqueue( S, Q ); /* Enqueue the start vertex S */
/* 3*/
            while( !IsEmpty( Q ) )
/* 4*/
               V = Dequeue(Q);
/* 5*/
               for each W adjacent to V
/* 6*/
                    if(T[V].Dist + Cvw < T[W].Dist)
                       /* Update W */
/* 7*/
                       T[W].Dist = T[V].Dist + Cvw;
/* 8*/
                       T[W].Path = V;
/* 9*/
                       if(W is not already in Q)
/*10*/
                           Enqueue( W, Q );
           DisposeQueue( Q );
/*11*/
```

### More Example



|   | path              | length |
|---|-------------------|--------|
| 1 | $v_0 v_2$         | 10     |
| 2 | $v_0 v_2 v_3$     | 25     |
| 3 | $v_0 v_2 v_3 v_1$ | 45     |
| 4 | $v_0 v_4$         | 45     |

- Graph and Shortest Paths from v<sub>0</sub> to All Destination

#### More Example



| i | S      | и | 1        | 2        | 3        | 4    | 5 | 6   | 7        | 8        |
|---|--------|---|----------|----------|----------|------|---|-----|----------|----------|
|   |        |   | $\infty$ | $\infty$ | $\infty$ | 1500 | 0 | 250 | $\infty$ | $\infty$ |
| 1 | 5      | 6 | $\infty$ | $\infty$ | $\infty$ | 1250 | 0 | 250 | 1150     | 1650     |
| 2 | 56     | 7 | $\infty$ | $\infty$ | $\infty$ | 1250 | 0 | 250 | 1150     | 1650     |
| 3 | 567    | 4 | $\infty$ | $\infty$ | 2450     | 1250 | 0 | 250 | 1150     | 1650     |
| 4 | 5674   | 8 | 3350     | $\infty$ | 2450     | 1250 | 0 | 250 | 1150     | 1650     |
| 5 | 56748  | 3 | 3350     | 3250     | 2450     | 1250 | 0 | 250 | 1150     | 1650     |
| 6 | 567483 | 2 | 3350     | 3250     | 2450     | 1250 | 0 | 250 | 1150     | 1650     |

**Ø8**14-02-05

Weiss, Data Structures & Alg's