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Graph

« A graph is a pair (I, £), where
— V is a set of nodes, called vertices
— £ is a collection of pairs of vertices, called edges

» Each edge is a pair (v, w), wherev, w €V

2013 — 2st)| Weiss, Data Structures & Alg's




Graph - Example

* A vertex represents an airport and stores the
three—letter airport code

 An edge represents a flight route between two
airports and stores the mileage of the route
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Graphs-Terminology

« The vertex pair is ordered (unordered), then the
graph is directed (undirected)

 Vertex w is adjacent to v if and only if (v, w)EE
* An edge could have a weight or a cost

- A path (simple path) is a sequence of vertices
W1,W2,"',WN S.t. (Wi’ Wi+1) & E fOf a” 1 < | < N

« Path length is the number of edges
« Cycle in a directed graph
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Edge Types

* Directed edge
— ordered pair of vertices (v,w)
— first vertex v is the origin
— second vertex w is the destination
— e.g., a flight
 Directed graph (=digraph)
— all the edges are directed as in route network
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Directed graph




Edge Types

« Undirected edge
— unordered pair of vertices (u,v)

— e.g., a flight route

« Undirected graph
— all the edges are undirected
- e.g., flight network

849
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Applications

* Electronic circuits
— Printed circuit board
— Integrated circuit

. Transportation networks  cs-brown.edu
— Highway network

— Flight network brown.edu
- Computer networks R

~ Local area network atnet

— Internet

— Web

« Databases
— Entity—-relationship diagram
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Terminology(cont.)

= An undirected graph is connected if there is a path
from every vertex to every other vertex

= A directed graph with this property is strongly
connected

= |f not strongly connected, but connected, then the
graph is weakly connected

= A complete graph is a graph in which there is an
edge between every pair of vertices
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Terminology(cont.)

« Edges incident on a vertex

— a, d, and b are incident on V
« Adjacent vertices

— U and V are adjacent
* Degree of a vertex

— Total no.of edges

— X has degree 5
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Example

« P,=(V,b,X,h,Z2) is a

simple path

* P,=(U,W,X,Y,W,V)

IS not simple
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Terminology (cont.)

 Cycle

— circular sequence of alternating vertices
and edges

— each edge is preceded and followed by
its endpoint

« Simple cycle

— cycle such that all its vertices and edges
are distinct
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Example

« C=(V,X,Y,W,U,V) is
a simple cycle

« C,=(U,W,X,Y,W,V,U)
iS a cycle that is not
simple
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Properties

Property 1
2 deg(n) = 2e

Proof: each endpoint is

counted twice
Property 2

Notation
Vv
e

number of vertices
number of edges

deg(n) degree of vertex n

In an undirected graph

with no self-loops
and no multiple edges

e<v(v—-1)/2

Proof: each vertex has
degree at most (n—1)

Example
—v=4
—e=6

— deg(n)=3
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Graph representation

« Adjacency matrix representation
v Simple
v' Appropriate when the graph is dense
v El=0(V]?)

 Adjacency list representation
v' When the graph is sparse
v' Space requirementis O(|E| + |V |)




Graph representation




Graph representation
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Topological Sort

* An ordering of vertices in a directed acyclic
graph such that

— iIf there exists a path from v; to v; v; appears
before v; in the ordering

— For a graph with cycle = no topological
ordering
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Prerequisite graph

CAP3700

MAD2104

@

COP3530

COP4540

COP5621

MAC3311

COP3210

COP3400 CIS4610

COP3337 CDA4101 COP4610

Figure 9.3 An acyclic graph representing course prerequisite structure




Topological ordering

— An acyclic graph

- Possible topological ordering:
V1, Vo, Vs, Vg V3, V7, Vg
V1, Vo, Vi, Vg, V7, V3, Vg




Simple topological sort algorithm

Topsort( Graph G )
{
int Counter;
Vertex V, W;

for( Counter = 0; Counter < NumVertex; Counter++ )
{ :
V = FindNewVertexOfDegreeZero( ); //sequential scan
if ( V == NotAVertex )
{
Error( "Graph has a cycle" );
break:
}
TopNum[ V ] = Counter;
for each W adjacent to V
Indegree[ W ]--;




Better topological sort algorithm

Topsort( Graph G );

Queue Q;
int Counter = 0;
Vertex V, W;

wE Jr/ Q = CreateQueue( NumVertex ); MakeEmpty( Q );
o for each vertex V
& 3%/ if( Indegree[ V ] == 0 )
4%/ Enqueue( V, Q );
ye 5%/ while( !IsEmpty( Q ) )
{
i 63/ V = Dequeue( Q );
iRy e 4 TopNum[ V ] = ++Counter; /*Assign next number
/* 8%/ for each W adjacent to V
[* 9%/ if( --Indegree[ W ] == 0 )
4*x10%/ Enqueue( W, Q );
}
LELL*>/ if ( Counter != NumVertex )
[(*12%/ Error( "Graph has a cycle" );
F*13* [/ DisposeQueue( Q ); /* Free the memory */

£ /
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Topological sort

Figure 9.6 Result of applying topological
sort to the graph in Figure 9.4

Indegree Before Dequeue #

Vertex 1 2 3 4 5 6 7
Vi 0 0 0 0 0 0 0
Vs 1 0 0 0 0 0 0
V3 2 1 1 1 0 0 0
Vg4 3 2 1 0 0 0 0
Vs 1 1 0 0 0 0 0
Vg 3 3 3 3 2 1 0
o 2 2 2 1 0 0 0
Enqueue Vi V) Vs V4 V3, V7 Vg
Dequeue v Vs Vs Vg Vi o Ve




Example again.
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Shortest Path Algorithm

« Let’s view a graph as the highway structure of a
state or country with vertices representing cities
and edges representing sections of highway.

 The edges are assigned weights which might be
the distance between the two cities connected by
the edge or the average time to drive the edge

1. Is there a path from A to B?

2. If there is more than one path from A to B,
which is the shortest path?
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Shortest-Path Algorithms

 The input is a weighted graph: associated with
each edge (v, v;) is a cost ¢; ; to traverse the
edge.

» The cost of a path v,v,***v, is 3" ¢; ;.

Single-Source Shortest Path Problem :

Given as input (i) a weighted graph G, and (ii) a
distinguished vertex s, find the shortest
weighted path from s to every other vertex in G
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Example

* Which is the shortest path from v, to v,?

2
D
4 \ 3 \0A
2 2
V3 “—

Vg Vs

\5 8 ‘ Aﬁ/
1

( V6 R — V7

e

Figure 9.8 A directed graph G




Graph with negative cost cycle

e Same question on the nodes v tov,?

Figure 9.9 A graph with a negative-cost cycle




Four different versions

1. Unweighted shortest path problem

2. Weighted shortest path problem for graphs
with no negative edges

3. Weighted shortest path problem for graphs
with negative edges

4. Weighted problem for the special case of
acyclic graphs
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Unweighted shortest path

« Edge has no weight
« Special case of weighted shortest path

Figure 9.10 An unweighted directed graph G




-iNnding a shortest path

Figure 9.11 Marking the start node as reachable in 0 edges




-iNnding a shortest path

Figure 9.12 Finding all vertices whose path length from s is 1
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-iNnding a shortest path

Figure 9.13 Finding all vertices whose shortest path is 2




-iNnding a shortest path

Figure 9.14 Final shortest paths




Graph

* d,: distance from s

* p,- actual paths v Known 4y P
U1 0 % 0
75) 0 o 0
U3 0 0 0
U4 0 OC 0
Us 0 C 0
Usg 0 o 0
V7 0 © 0

Figure 9.15 Initial configuration of table used in un-
weighted shortest-path computation




Draft Algorithm

Unweighted( Table T ) /* Assume T is initialized */

{
int CurrDist;
Vertex V, W;
J* 1%/ for( CurrDist = 0; CurrDist < NumVertex; CurrDist++ )
J* 2%/ for each vertex V
* 3%/ if ( ITLV ].Known & & T[ V ].Dist == CurrDist ]
{
/* 4%/ T[ V ].Known = True;
I 5% for each W adjacent to V
FAHE T ifC TL W ].Dist == Infinity )
{
[* 7%/ T[ W ].Dist = CurrDist + 1;
Vil . TL W ].Path = V;
}
}




Analysis on Draft Algorithm

* The running time is O(|V]2) due to the
doubly nested for loops in the algorithm

 The outside loop continues to the end even
If all the vertices become known much
earlier.

« Extra test to avoid this does not affect the
worst—case running time, for instance for
the next graph

» Possible solution is using queue (its
algorithm on the next slide)
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Bad case

Figure 9.17 A bad case for unweighted shortest-path algorithm
using Fig 9.16




Unweighted( Table T ) /* Assume T is initialized (Fig 9.30

Queue Q;
Vertex V, W;

Q = CreateQueue( NumVertex ); MakeEmpty( Q );

/* Enqueue the start vertex S, determined elsewhere */
Enqueue( S, Q );
while( !'IsEmpty( Q ) )
{

V = Dequeue( Q ):
TL V ]J.Known = True; /* Not really needed anymore *

for each W adjacent to V
ifC TL W ].Dist == Infinity )

{
TL W ].Dist = T[ V ].Dist + 1;
TL W ].Path = V;
Enqueue( W, Q );

}

}

DisposeQueue( Q ); /* Free the memory */




Tracing Execution

Initial State v3 Dequeued y1 Dequeued v Dequeued

v known d, p, known d, p, hknown d, p, known d, p,
v F 0 0 F (13w T 1 w T 1 w
) F 0 0 F © 0 Fooi2) v F 2 v
w F {0y 0o T 0 0 T 0 0 T 0 0
w F o 0 F o 0 F (23w FE 2
v F o 0 F 0 F o 0 F o 0
Ve F o 0 F (:_f) vy F A T A
vy F o 0 F oo 0 F oo 0 F oo 0
Q: V3 V1, Y6 Vg, V2, Va V), V4

Figure 9.19 How the data changes during the unweighted SPA




Tracing Execution

v5 Dequeued v4 Dequeued vs Dequeued v7 Dequeued

v known d, p,  known d, p, hnown d, p,  known d, p,

V] T 1w T 1 T 1 n T 1 n
V) T 2 W T 2 W T 2 W T 2 v
V3 T 0 0 T 0 0 T 0 0 T 0 0
V4 F ’_2~ V] T 2 W T 2 W T 2 v
s F (33w F 03 v T 3 oy T 3 0y
Vg T 1 v T ’_1~ V3 T 1 v T 1 v
vy F x 0 F o3 v F 3 vy T 3 v
Q: V4, Vs Vs, V7 V7 empty

Figure 9.19 How the data changes during the unweighted SPA




Weighted Shortest Path

« Using Dijkstra’s Algorithm
* For single—source shortest path problem

 Example of Greedy Algorithm: By solving a
problem in stages by doing what appears to be
the best thing at each stage

« (Greedy algorithms do not always work
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Dijkstra’s Algorithm

 The distance of a vertex v from a vertex s is
the length of a shortest path between s and v

 Dijkstra’s algorithm computes the distances of
all the vertices from a given start vertex s

« Assumptions:

— the graph is connected
— the edges are undirected
— the edge weights are nonnegative

2012-2 stJ|
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Dijkstra’s Algorithm

- We grow a “cloud” of vertices, beginning with s
and eventually covering all the vertices

 We store with each vertex v a label representing
the distance of v from s in the subgraph

consisting of the cloud and its adjacent vertices
« At each step

— We add to the cloud the vertex u outside the
cloud with the smallest distance label

— We update the labels of the vertices adjacent
to u

2012-2 & | 4 Weiss, Data Struct's

& Alg's



Edge Relaxation

- Consider an edge e =(u,z)
such that

-

- ~~

10 d(z) =75

— uis the vertex most recently .~~~
added to the cloud l 8

— zis notin the cloud

 The relaxation of edge e
updates distance d(z) as
follows

—_——-— -

-~
~
-~
-~
~——-

- =~
-
-

d(z) « min(d(z), d(u)y+weight(e)) .-
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Example (cont.)

— -

S - -
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Single-source shortest path

S V=S

If v € S, Best(v) is the length of the shortest path
between source and v

If v € S, Best(v) is the length of the shortest path
between source and v when using only the vertices
in S as intermediate vertices
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Dijkstra’s algorithm
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Dijkstra’s algorithm

S = @; Best[1] =0; Best[all the other vertices] = o ;
BuildHeap(v) for each vertex v with value Best[v] ;
while S has fewer than n nodes do {
1) Select the vertex 1| with the smallest Best[i] in V-S ;
2) S<& S U{i};
3) for each vertex j in V-S adjacent to |
If Best[j] > Best[i] + C[i, j] {
Best[j] = Best[i] + C[i, j] ;
PO = i;
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Example

10 100

50\ 10 / 60

20
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2NN
30 V-S

5
2 I
|
5& 2 /30 Best 0
3 55— * 2
10
1-0 1
/ \
Step]_ 2 -00 3 -0
/ \
4 -0 5 -0
5-w
Step 2 7/ \
2 -0 3 -0
/
4 -0
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Figure 9.20 The directed graph G

v Known d, p,
U1 0 0 0
175) 0 0 0
U3 0 0 0
Vs 0 o 0
Us 0 0 0
Ve 0 00 0
V7 0 © 0

Figure 9.21 Initial configuration




v Known d, p,
U1 1 0 0
V> 0 2 U1
V3 0 oc 0
Vs 0 1 2
Vs 0 o0 0
Vg 0 o0 0
V7 0 o 0

Figure 9.22 After v: is declared known




v Known d, p,
U1 1 0 0
V2 0 2 U1
U3 0 s, Vs
Vs 1 1 1
Vs 0 3 V4
Vg 0 9 77
V7 0 b) Vs

Figure 9.23 After v. is declared known




v Known d, p,
U1 1 0 0
7] 1 2 V1
U3 0 3 V4
V4 1 1 U1
Vs 0 2 V4
Vg 0 9 V4
V7 0 S v,

Figure 9.24 After v: is declared known




v Known d, p,
(28] 1 0 0
(%) 1 2 U1
Vs 1 3 Vs
Vs 1 1 75
Us 1 3 V4
Vg 0 8 V3
V7 0 S

Figure 9.25 After vs & vs are declared known




v Known d, p,
U1 1 0 0
V) 1 2 v
U3 1 3
V4 1 1 U1
Us 1 3 V4
Usg 0 6 U7
V7 1 S vy

Figure 9.26 After v- is declared known




v Known d, p,
U1 1 0 0
(2] 1 2 125
V3 1 3 Va4
V4 1 1 U1
Us 1 3 V4
Vs 1 6 U7
U7 1 5 Vs

Figure 9.27 After ve is declared known
and algorithm terminates




Stages of Dijkestra’s algorithm




Stages of Dijkstra’s algorithm




Table Structure

typedef int Vertex;

struct TableEntry

{
List Header; /* Adjacency list */
int Known;
DistType Dist;
Vertex Path;
&

/* Vertices are numbered from 0 */
#define NotAVertex (-1)
typedef struct TableEntry Table[ NumVertex ];
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Table Initializer

void
InitTable( Vertex St
{

art, Graph G, Table T )

int 1;
/* 1%/ ReadGraph( G, T ); /* Read graph somehow */
[* 2%/ for( 1 = 0; 1 < NumVertex; i++ )

{
J* 3*/ T[ 1 ].Known = False;
[* 4%/ TL 1 ].Dist = Infinity;
[ S%f T[ 1 ].Path = NotAVertex;

h
/* 6%/ T[ Start ].dist = 0;

}
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Path Printing Algorithm

/* Print shortest path to V after Dijkstra has run
/* Assume that the path exists */

void
PrintPath( Vertex V, Table T )
{
if( T[ V ].Path != NotAVertex )
{
PrantPath T[ ¥V 1.Path, T ):
printf( " to" ):
}

printf( "%v", V ); /* %v is pseudocode */

ale /
"
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Dijkstra’s algorithm

Dijkstra( Table T )

{
Vertex V, W;
j* 1%} forC ; ;5 )
{
e Zxy V = smallest unknown distance vertex;
[ %y if( V == NotAVertex )
/* 4%/ break;
% 3% T[ V ].Known = True;
/* 6*/ for each W adjacent to V
[E T%) if( !T[ W ].Known )
j* gey if( T[T V ].Dist + Cvw < T[ W ].Dist )
{ /* Update W */
/* 9%/ Decrease( T[ W ].Dist to
TL V ].Dist + Cvw );
/*10%/ T[ W ].Path = V;
}
}
}
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Dijkstra’s algorithm

WeightedNegative( Table T )
{

Queue Q;
Vertex V, W;

/% 1%/ Q = CreateQueue( NumVertex ); MakeEmpty( Q );
Jx 2%/ Enqueue( S, Q ); /* Enqueue the start vertex S */
/* 3%/ while( !IsEmpty( Q ) )
{
/% 4%/ V = Dequeue( Q );
J* 5%/ for each W adjacent to V
/% 6%/ ifC TL V ].Dist + Cvw < T[L W ].Dist )
{
/* Update W */
JE 7x/ TL W ]J.Dist = T[ V ].Dist + Cvw;
/.,-‘- 8!—/ T[ w ].Path = V;
Jx gy if( W is not already in Q )
/%10% / Enqueue( W, Q );
h
}
/*11%/ DisposeQueue( Q );
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More Example

Vo = Vi =V path length
4 35 1 | vV, 10
201 /10 /15 20 2 | VgVyV3 25
30 3 | VgVoV3Vy 45
Vs 5 Vs - 3 Vs 4 | vyV, 45

— Graph and Shortest Paths from v, to All Destination
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More Example
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