Data Structures and Algorithms
= Heap -

School of Electrical Engineering
Korea University

2014-02-05 Weiss, Data Structures & Alg's

Heaps(Priority Queues)
* FIFO Queue OINS SHI&E
— Shortest job first A& R
— incoming jobOl CHo S&= (dynamic) M4 ER

—> priority queue

* |mplementation — list, array, binary tree

2012-2 stD| Weiss, Data Struct’s & Alg's

Model

* Allows at least following two operations:

— Insert
— DeleteMin

o DeleteMin returns and removes the minimum
element in the heap

“DeleteMin(H) Insert(H)

Priority Queue H

2014-02-05 Weiss, Data Structures & Alg's

What is a min-heap?

A heap is a binary tree storing keys at its
internal nodes and satisfying the following
properties:

1) Heap order: for every internal node v other than
the root, key(v) > key(parent(v))

2) Complete binary tree: let h be the height of the
heap, then

. for i=0,...,h—=1, there are 2! nodes of depth
|

« at depth h, the nodes are filled from left to
right

2012-2 stJ| Weiss, Data Struct'’s & Alg's

Heap: complete binary tree

« A complete binary tree of height h has between 2h
and 2" -1 nodes

2014-02-05 Weiss, Data Structures & Alg’s

Array Iimplementation

H

I

J

8

9

10 11

12

13

2014-02-05

Weiss, Data Structures & Alg’s

Min heap

» heap orader property:
ord(parent.) <ord(left_child_of parent.),
ord(parent.) <ord(right_child_of parent.),
for all nodes in the tree.

* tree implementation on array a/7:NJ/
a[2i] : left child of ali]
al21+1] : right child of ai]

2012-2 stD| Weiss, Data Struct’s & Alg's

Declaration for priority queue

PriorityQueue
Initialize(int MaxElements)

{
PriorityQueue H;
[* 1>/ if(MaxElements < MinPQSize)
[* 2%/ Error("Priority queue size is too small");
Vel o H = malloc(sizeof(struct HeapStruct));
/* 4%/ if(C H == NULL)
e B f FatalError("Out of space!!!"™);
/* Allocate the array plus one extra for sentinel */
/* 6%/ H->Elements = malloc((MaxElements + 1)
* sizeof(ElementType));
/% 7%/ if(H->Elements == NULL)
J* 8%/ FatalError("Out of space!!!");
= 9%y H->Capacity = MaxElements;
/*¥10*/ H->Size = 0;
e By v 4 H->Elements[0] = MinData;
/*12%/ return H;
}
2014-02-05 Weiss, Data Structures & Alg’s

Heap Order Property

Figure 6.5 Two complete trees(only the left tree is a heap)

2014-02-05 Weiss, Data Structures & Alg’s

Array Implementation

 We can represent a heap with n keys by means of a

vector of length n+1

For the node at rank i

— the left child is at rank 2i

— the right child is at rank 2i +1

Links between nodes are not explicitly stored
The cell of at rank 0 is not used

Insert corresponds to inserting at rank n +1

DeleteMin corresponds to removing at rank 1

2012-2 stD| Weiss, Data Struct’s & Alg's

10

Height of a Heap
Theorem: A heap storing n keys has height O(log n)

Proof: (we apply the complete binary tree property)
— Let h be the height of a heap storing n keys

— Since there are 2! keys at depthi=0,...,h—1and
at least one key at depth h, we have n>1+2+4
+...+2M1 41

— Thus, n > 2", i.e., h<logn

2012-2 &tJ| Weiss, Data Struct’s & Alg’s 11

Height of a Heap

« Since there are 2' keys at depthi=0,...,h—-1and at
least one key at depth h, we have n>1+2+4+ ... +2h-1

+1
« Thus,n>2",i.e., h<logn

depth keys
0 | == o
1 2 TTTTTTTTTT o
2 2
3 28 —————-
4 1 -

2012-2 stD| Weiss, Data Struct’s & Alg's

12

Heap operations

Insert (up—heap) — insert a new key with a hole at
the last location of the heap: O(log N)

DeleteMin (down—-heap) — min. of the heap is
replaced with the last element of heap, then heapify
it: O(log N)

Delete — remove a specified node, then heapify it:
O(log N)

BuildHeap — Create a heap with Ninput keys
O(N log N)

2012-2 stD| Weiss, Data Struct’s & Alg's

13

Insertion into a Heap

* Insert operation of the priority queue ADT
corresponds to the insertion of a key k to

the heap

* The insertion algorithm consists of the

following steps
— Find the insertion node z (the new last node)

— Restore the heap—order property (known as
percolate up)

2012-2 stJ| Weiss, Data Struct'’s & Alg's

14

Example: Insert 14

2014-02-05 Weiss, Data Structures & Alg’s

15

Example: Insert 14

2014-02-05 Weiss, Data Structures & Alg’s

16

Example: Insert 14

2014-02-05 Weiss, Data Structures & Alg’s

17

Insert Algorithm

/¥ H->Element[O] is a sentinel */

void
Insert(ElementType X, PriorityQueue H)
{

InE 18
if(IsFUll(H))
{

Error("Priority queue is full");
return;

}

for(i = ++H->Size; H->Elements[i / 2] > X; i /=2)

H->Elements[i] = H->Elements[i / 2]:
H->Elements[i] = X;

2014-02-05 Weiss, Data Structures & Alg’s

18

DeleteMin

* DeleteMin operation of the priority queue
ADT corresponds to the removal of the
root key from the heap

 The removal algorithm consists of three
steps

— Replace the root key with the key of the last
node w

— Restore the heap—order property (known as
percolate down)

2014-02-05 Weiss, Data Structures & Alg’s 19

Example: DeleteMin

Figure 6.9 Creation of the hole at the root

2014-02-05 Weiss, Data Structures & Alg’s

20

Example: DeleteMin

Figure 6.10 Next two step in DeleteMin

2014-02-05 Weiss, Data Structures & Alg’s

21

Example: DeleteMin

DG s

Figure 6.11 Last two steps in DeleteMin

2014-02-05 Weiss, Data Structures & Alg’s

22

ElementType
DeleteMin(PriorityQueue H)

{
e 3, Chi1kd;
ElementType MinElement, LastElement;
i B € ISEmptyC H))
{
= 2L Error("Priority queue 1is empty");
fH [return H->Elements[0];
}
[% 4%/ MinElement = H->Elements[1];
* 5%/ LastElement = H->Elements[H->Size--];
* 6%/ forC 4 = 1; 4 * 2 <= H=>Size; 1 = Child)
{
/¥ Find smaller child #*/
/* 7%/ cChild = 1 & 23
[* 8%/ if(C Child !'= H->Size & & H->Elements[Child + 1]
/= o/ < H->Elements[Child])
/*10%*/ Child++;
/* Percolate one level */
/*11*/ if(LastElement > H->Elements[Child])
[*12%/ H->Elements[i] = H->Elements[Child];
else
7 g IS 7 break;
¥
/x14%*/ H->Elements[i] = LastElement;
L=1.5%/ return MinElement;
}
2014-02-05 Weiss, Data Structures & Alg's 23

BuildHeap operation

 Takes as input NN keys and places them
iInto an empty heap

 Can be done with N successive Insert
operations, which takes O(N# logN) worst
time.

« A solution is to place the N keys into the
tree in any order, maintaining the structure
property.

 Create a heap—ordered tree using the following
algorithm

2014-02-05 Weiss, Data Structures & Alg’s

24

BuildHeap operation

Figure 6.14 Sketch of BuildHeap

forCi =N/ 2;1>0; i--)
PercolateDown(i);

N =15
PercolateDown(7)

2014-02-05 Weiss, Data Structures & Alg’s

25

BuildHeap operation

Figure 6.15 After PercolateDown(7)

2014-02-05 Weiss, Data Structures & Alg’s

26

BuildHeap operation

()
(; (@0
OO @
09 (20)(30) (60)(70) (20 (@) (1)

Figure 6.16 After PercolateDown(6)

2014-02-05 Weiss, Data Structures & Alg’s

27

BuildHeap operation

\

I

Y
4

-

Pl 4

-

~=
D>
\\ 4

-

@) (259 ()) (3@ (2

Figure 6.17 After PercolateDown(4)

-
-—

2014-02-05 Weiss, Data Structures & Alg’s

28

BuildHeap operation

Figure 6.18 After PercolateDown(2)

2014-02-05 Weiss, Data Structures & Alg’s

29

BuildHeap operation

Figure 6.18 after PercolateDown(1)

2014-02-05 Weiss, Data Structures & Alg’s

30

Theorem

For the perfect binary tree of height h containing
2h*1 1 nodes, the sum of the heights of the nodes
is2M1 -1 - (h+1)

height keys
h(=4) | ———==——————=———==—————-

2014-02-05 Weiss, Data Structures & Alg's

31

d-Heaps

* Like a binary heap except that all nodes
have d children

Figure 6.19 A sample 3-heap

2014-02-05 Weiss, Data Structures & Alg's

32

Properties of d-Heaps

 Much shallower than a binary heap

 Running time of /nsertsis O (logyN)

* For DeleteMin, the minimum of d children
must be found
— Could be expensive for large d
— Requires d =1 comparisons
— O (d * logg N)

 When implemented on an array, d is a power
of 2 for bit shift for division & multiplication

2014-02-05 Weiss, Data Structures & Alg's

33

Merging

 Combining two heaps into one

« A few ways of implementing heaps so that
the running time of a Merge is O (logN)
— Leftist Heaps
— Skew Heaps
— Binomial Queues

2014-02-05 Weiss, Data Structures & Alg's

34

Leftist Heap

IS a binary tree

Has both a structural property and an
ordering property.

Ordering property is same as ordinary heap
ordering property

Structural property is different: is not
perfectly balanced, but actually attempts to
be unbalanced.

Defined using the null path length

2014-02-05 Weiss, Data Structures & Alg's 35

Null path length

« Npl(X) of any node X: the length of the
shortest path from X to a node without two
children.

« Npl(X) = 0 when X is a node with zero or
one child

« Npl(NULL) = —1.

« Npl(X) =1 + Npl(Y) where Y is a child of X
with a minimum null path length.

2014-02-05 Weiss, Data Structures & Alg's

36

Leftist heap property

» For a node X in the heap, Npl(LC,) >= Npl(RC,)

where LCy and RCy are left child and right child
of X, respectively

Figure 6.20 Null path lengths for two trees; only the left tree is leftist

2014-02-05 Weiss, Data Structures & Alg's

37

Observations

* The tree is unbalanced and biases deeply
toward the left.

 The tree has a left deep paths while the
right path ought to be short

(Theorem 6.2)

A leftist tree with rnodes on the right path
must have at least 2" —1 nodes

=> proof by induction:-- (you try!!!)

2014-02-05 Weiss, Data Structures & Alg's

38

Type declaration

struct TreeNode;
typedef struct TreeNode *PriorityQueue;

/* Minimal set of priority queue operations */

/* Note that nodes will be shared among several */
/* leftist heaps after a merge; the user must */
/* make sure to not use the old leftist heaps *

PriorityQueue Initialize(void);

ElementType FindMin(PriorityQueue H);

int IsEmpty(PriorityQueue H);

PriorityQueue Merge(PriorityQueue H1l, PriorityQueue H2);

#define Insert(X, H) (H = Insertl((X), H))
/* DeleteMin macro is left as an exercise */

PriorityQueue Insertl(ElementType X, PriorityQueue H);
PriorityQueue DeleteMinl(PriorityQueue H);

2014-02-05 Weliss, Data Structures & Alg’s

39

Driving Routine for Merging

/* Place in implementation file */
struct TreeNode
{
ElementType Element;
PriorityQueue Left;
PriorityQueue Right;
int Npl;
b

PriorityQueue
Merge(PriorityQueue H1l, PriorityQueue H2)

{
* Jae/ if(HL == NULL)
[2%f return H2;
f¥%* I%/ if(H2 == NULL)
[% 4%/ return H1l;
[% 5%/ if(Hl->Element < H2->Element)
/* 6%/ return Mergel(H1, H2);
else
[® 7%/ return Mergel(H2, H1l);
}

2014-02-05 Weiss, Data Structures & Alg's

40

Actual Merging Routine

static PriorityQueue
Mergel(PriorityQueue H1l, PriorityQueue H2)

{
J* 1%/ if(Hl->Left == NULL) /* Single node */
/* 2%/ Hl->Left = H2; /* Hl->Right is already NULL,
H1->Np1 1is already 0 */
else
S — .
J% 3% I H1->Right = Merge(H1->Right, H2);:
/* 4%/ 1T HI->Left->Np1 < HI->Right->NpT)
- SwapChildren(H1);
/% ¥/ H1->Np1 = H1->Right->Npl + 1;
}
7 il o4 return H1;
}

Figure 6.27 Actual routine to merge leftist heaps

2014-02-05 Weiss, Data Structures & Alg's

41

Leftist Heap Merge

Figure 6.21 Two leftist heaps H: and H:

2014-02-05 Weiss, Data Structures & Alg's

42

Leftist Heap Merge

Figure 6.21 Two leftist heaps Hz and right subheap of H

2014-02-05 Weiss, Data Structures & Alg's

43

Leftist Heap Merge

Figure 6.21 Two right subheaps of Hi and H-

2014-02-05 Weiss, Data Structures & Alg's

44

Leftist Heap Merge

Figure 6.21 Right subheap continued

2014-02-05 Weiss, Data Structures & Alg's

45

Leftist Heap Merge

Figure 6.22 Result of merging Hz with H:’s right subheap

2014-02-05 Weiss, Data Structures & Alg's

46

Leftist Heap Merge

Figure 6.22 Result of merging Hz with H:’s right subheap

2014-02-05 Weiss, Data Structures & Alg's

47

Leftist Heap Merge

Figure 6.21 Two leftist heaps H: and H:

2014-02-05 Weiss, Data Structures & Alg's

48

Leftist Heap Merge

Figure 6.21 Two leftist heaps H: and H:

2014-02-05 Weiss, Data Structures & Alg's

49

Leftist Heap Merge

Figure 6.22 Result of merging Hz with H:’s right subheap

2014-02-05 Weiss, Data Structures & Alg's

50

Leftist Heap Merge

Figure 6.23 Result of attaching leftist heap of previous figure as Hi’s right child

2014-02-05 Weiss, Data Structures & Alg's

51

Leftist Heap Merge

Figure 6.24 Result of swapping children Hi’s root

2014-02-05 Weiss, Data Structures & Alg's

52

Leftist Heap Insertion

* 11':/
[* 2%/
/* 3%/

/x 4%/
/* 5%/
/'A' 6*/

/* 7/

PriorityQueue
Insertl(ElementType X, PriorityQueue H)

{

}

PriorityQueue SingleNode;

SingleNode = malloc(sizeof(struct TreeNode));
if(SingleNode == NULL)

FatalError("Out of space!!!");
else

{
SingleNode->Element = X; SingleNode->Npl = 0;
SingleNode->Left = SingleNode->Right = NULL;
H = Merge(SingleNode, H);

}

return H;

Figure 6.29 Insertion routine for leftist heaps

2014-02-05

Weiss, Data Structures & Alg's

53

Leftist Heap DeleteMin

/* DeleteMinl returns the new tree; */
/* To get the minimum, use FindMin */
/* This is for convenience */

PriorityQueue
DeleteMinl(PriorityQueue H)

{
PriorityQueue LeftHeap, RightHeap;

/% 1%/ if(IsEmpty(H))
{
/% 2%/ Error("Priority queue is empty”);
/-,': 3:‘:/ return Hs
}
/-,'; 4:‘:/ Le‘FtHeap — H->Left;
/% 5%/ RightHeap = H->Right;
/% 6%/ free(H);
/% 7%/ return Merge(LeftHeap, RightHeap);

Figure 6.30 DeleteMin routine for leftist heaps

2014-02-05 Weiss, Data Structures & Alg's

54

