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Heaps(Priority Queues) 

• FIFO Queue 에서의 문제점 

–  Shortest job first 정책필요 

–  incoming job에 대해 동적(dynamic) 재구성 필요 

 

    -> priority queue 

 

• Implementation – list, array, binary tree 

 

 

 



• Allows at least following two operations: 

– Insert 

– DeleteMin  

 

• DeleteMin returns and removes the minimum 
element in the heap 

Model 
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Priority Queue H 
Insert(H) DeleteMin(H) 
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What is a min-heap? 

• A heap is a binary tree storing keys at its 
internal nodes and satisfying the following 
properties: 
1) Heap order: for every internal node v other than 

the root,   key(v)  key(parent(v)) 
 

2) Complete binary tree: let h be the height of the 
heap, then 

• for i = 0, … , h - 1, there are 2i nodes of depth 
i 

• at depth h, the nodes are filled from left to 
right 



Heap: complete binary tree 
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• A complete binary tree of height h has between 2h 
and 2h+1 – 1 nodes 



Array implementation 
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Min heap 

• heap order  property:  

 

 

        for all nodes in the tree. 

 

• tree  implementation on array a[1:N] 
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Declaration for priority queue 
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Heap Order Property 
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Figure 6.5 Two complete trees(only the left tree is a heap) 
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Array Implementation 

• We can represent a heap with n keys by means of a 
vector of length n  1 

• For the node at rank i 

– the left child is at rank 2i 

– the right child is at rank 2i  1 

• Links between nodes are not explicitly stored 

• The cell of at rank 0 is not used 

• Insert  corresponds to inserting at rank n  1 

• DeleteMin  corresponds to removing at rank 1 
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Height of a Heap 

Theorem: A heap storing n keys has height O(log n) 

 

Proof: (we apply the complete binary tree property) 

– Let h be the height of a heap storing n keys 

– Since there are 2i keys at depth i = 0, … , h - 1 and 
at least one key at depth h, we have n  1  2  4 

 …  2h-1   1  

– Thus, n  2h , i.e., h  log n  
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Height of a Heap 

• Since there are 2i keys at depth i = 0, … , h - 1 and at 
least one key at depth h, we have n  1  2  4  …  2h-1  

 1  

• Thus, n  2h , i.e., h  log n 
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Heap operations 

• Insert (up-heap) – insert a new key with a hole at 

the last location of the heap:  

• DeleteMin (down-heap) – min. of the heap is 

replaced with the last element of heap, then heapify 
it:  

• Delete – remove a specified node, then heapify it: 

 

• BuildHeap – Create a heap with N input keys 
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Insertion into a Heap 

• Insert operation of the priority queue ADT 
corresponds to the insertion of a key k to 
the heap 
 

• The insertion algorithm consists of the 
following steps 
– Find the insertion node z (the new last node) 

– Restore the heap-order property (known as 
percolate up) 
 



Example: Insert 14 
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Example: Insert 14 
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Example: Insert 14 
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Insert Algorithm 
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DeleteMin 
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• DeleteMin operation of the priority queue 
ADT corresponds to the removal of the 
root key from the heap 

 

• The removal algorithm consists of three 
steps 
– Replace the root key with the key of the last 

node w 

– Restore the heap-order property (known as 
percolate down) 



Example: DeleteMin 
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Figure 6.9 Creation of the hole at the root 



Example: DeleteMin 
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Figure 6.10 Next two step in DeleteMin 



Example: DeleteMin 
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Figure 6.11 Last two steps in DeleteMin 



DeleteMin 

2014-02-05 Weiss, Data Structures & Alg's 23 



BuildHeap operation 
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• Takes as input N keys and places them 
into an empty heap 

• Can be done with N successive Insert 
operations, which takes O(N* logN) worst 
time. 

• A solution is to place the N keys into the 
tree in any order, maintaining the structure 
property. 

• Create a heap-ordered tree using the following 
algorithm 



BuildHeap operation 
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N = 15 

PercolateDown(7) 



BuildHeap operation 
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Figure 6.15 After PercolateDown(7) 



BuildHeap operation 
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Figure 6.16 After PercolateDown(6) 



BuildHeap operation 
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Figure 6.17 After PercolateDown(4) 



BuildHeap operation 
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Figure 6.18  After PercolateDown(2) 



BuildHeap operation 
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Figure 6.18  after PercolateDown(1) 



   For the perfect binary tree of height h containing 

2h+1 – 1 nodes, the sum of the heights of the nodes 

is 2h+1 – 1 – (h + 1) 

Theorem 
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• Like a binary heap except that all nodes 
have d children 

d-Heaps 
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Figure 6.19 A sample 3-heap 



• Much shallower than a binary heap 

• Running time of Inserts is O (logd N) 

• For DeleteMin, the minimum of d children 

must be found   
– Could be expensive for large d 

– Requires d -1 comparisons 

– O (d * logd N) 

• When implemented on an array, d is a power 

of 2 for bit shift for division & multiplication 

 

Properties of d-Heaps 
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• Combining two heaps into one 

• A few ways of implementing heaps so that 
the running time of a Merge is O (logN) 

– Leftist Heaps 

– Skew Heaps 

– Binomial Queues 

Merging 
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• Is a binary tree 

• Has both a structural property and an 
ordering property. 

• Ordering property is same as ordinary heap 
ordering property 

• Structural property is different: is not 
perfectly balanced, but actually attempts to 
be unbalanced. 

• Defined using the null path length 

Leftist Heap  
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• Npl(X) of any node X: the length of the 
shortest path from X to a node without two 
children. 

• Npl(X) = 0 when X is a node with zero or 
one child 

• Npl(NULL) = -1. 

• Npl(X) = 1 + Npl(Y) where Y is a child of X 
with a minimum null path length. 

Null path length 
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• For a node X in the heap, Npl(LCX) >= Npl(RCX) 
where LCX and RCX are left child and right child 
of X, respectively 

Leftist heap property 
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Figure 6.20 Null path lengths for two trees; only the left tree is leftist 



• The tree is unbalanced and biases deeply 
toward the left. 

• The tree has a left deep paths while the 
right path ought to be short 

 

  (Theorem 6.2)  

   A leftist tree with r nodes on the right path 
must have at least 2r -1 nodes 

   => proof by induction… (you try!!!) 

Observations 
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Type declaration 
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Driving Routine for Merging 
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Actual Merging Routine 
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Leftist Heap Merge 
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Figure 6.21 Two leftist heaps H1 and H2 



Leftist Heap Merge 
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Figure 6.21 Two leftist heaps H2 and right subheap of H1 



Leftist Heap Merge 
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Figure 6.21 Two right subheaps of H1 and H2 



Leftist Heap Merge 
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Figure 6.21 Right subheap continued 

merge 



Leftist Heap Merge 
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Figure 6.22 Result of merging H2 with H1’s right subheap  

merge 



Leftist Heap Merge 
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Figure 6.22 Result of merging H2 with H1’s right subheap  



Leftist Heap Merge 
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Figure 6.21 Two leftist heaps H1 and H2 



Leftist Heap Merge 

2014-02-05 Weiss, Data Structures & Alg's 49 

Figure 6.21 Two leftist heaps H1 and H2 



Leftist Heap Merge 
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Figure 6.22 Result of merging H2 with H1’s right subheap  



Leftist Heap Merge 
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Figure 6.23 Result of attaching leftist heap of previous figure as H1’s right child 

Npl = 1 Npl = 2 



Leftist Heap Merge 
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Figure 6.24 Result of swapping children H1’s root 



Leftist Heap Insertion 
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Leftist Heap DeleteMin 
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