

School of Electrical Engineering

Korea University

Data Structures and Algorithms

- Heap -

2014-02-05 Weiss, Data Structures & Alg's 1

2012-2 학기 Weiss, Data Struct's & Alg's 2

Heaps(Priority Queues)

• FIFO Queue 에서의 문제점

– Shortest job first 정책필요

– incoming job에 대해 동적(dynamic) 재구성 필요

 -> priority queue

• Implementation – list, array, binary tree

• Allows at least following two operations:

– Insert

– DeleteMin

• DeleteMin returns and removes the minimum
element in the heap

Model

2014-02-05 Weiss, Data Structures & Alg's 3

Priority Queue H
Insert(H) DeleteMin(H)

2012-2 학기 Weiss, Data Struct's & Alg's 4

What is a min-heap?

• A heap is a binary tree storing keys at its
internal nodes and satisfying the following
properties:
1) Heap order: for every internal node v other than

the root, key(v)  key(parent(v))

2) Complete binary tree: let h be the height of the
heap, then

• for i = 0, … , h - 1, there are 2i nodes of depth
i

• at depth h, the nodes are filled from left to
right

Heap: complete binary tree

2014-02-05 Weiss, Data Structures & Alg's 5

• A complete binary tree of height h has between 2h
and 2h+1 – 1 nodes

Array implementation

2014-02-05 Weiss, Data Structures & Alg's 6

2012-2 학기 Weiss, Data Struct's & Alg's 7

Min heap

• heap order property:

 for all nodes in the tree.

• tree implementation on array a[1:N]

 : left child of

 : right child of

),ntld_of_pare(right_chi)(parent

),td_of_paren(left_chil)(parent

ii

ii

ordord

ordord





][i2a][ia

]1[i2a][ia

Declaration for priority queue

2014-02-05 Weiss, Data Structures & Alg's 8

Heap Order Property

2014-02-05 Weiss, Data Structures & Alg's 9

Figure 6.5 Two complete trees(only the left tree is a heap)

2012-2 학기 Weiss, Data Struct's & Alg's 10

Array Implementation

• We can represent a heap with n keys by means of a
vector of length n  1

• For the node at rank i

– the left child is at rank 2i

– the right child is at rank 2i  1

• Links between nodes are not explicitly stored

• The cell of at rank 0 is not used

• Insert corresponds to inserting at rank n  1

• DeleteMin corresponds to removing at rank 1

2012-2 학기 Weiss, Data Struct's & Alg's 11

Height of a Heap

Theorem: A heap storing n keys has height O(log n)

Proof: (we apply the complete binary tree property)

– Let h be the height of a heap storing n keys

– Since there are 2i keys at depth i = 0, … , h - 1 and
at least one key at depth h, we have n  1  2  4

 …  2h-1  1

– Thus, n  2h , i.e., h  log n

2012-2 학기 Weiss, Data Struct's & Alg's 12

Height of a Heap

• Since there are 2i keys at depth i = 0, … , h - 1 and at
least one key at depth h, we have n  1  2  4  …  2h-1

 1

• Thus, n  2h , i.e., h  log n

1

2

22

1

keys

0

1

2

4

depth

23 3

2012-2 학기 Weiss, Data Struct's & Alg's 13

Heap operations

• Insert (up-heap) – insert a new key with a hole at

the last location of the heap:

• DeleteMin (down-heap) – min. of the heap is

replaced with the last element of heap, then heapify
it:

• Delete – remove a specified node, then heapify it:

• BuildHeap – Create a heap with N input keys

) (log NO

) (log NO

) (log NO

) log (NNO

2012-2 학기 Weiss, Data Struct's & Alg's 14

Insertion into a Heap

• Insert operation of the priority queue ADT
corresponds to the insertion of a key k to
the heap

• The insertion algorithm consists of the
following steps
– Find the insertion node z (the new last node)

– Restore the heap-order property (known as
percolate up)

Example: Insert 14

2014-02-05 Weiss, Data Structures & Alg's 15

Example: Insert 14

2014-02-05 Weiss, Data Structures & Alg's 16

Example: Insert 14

2014-02-05 Weiss, Data Structures & Alg's 17

Insert Algorithm

2014-02-05 Weiss, Data Structures & Alg's 18

DeleteMin

2014-02-05 Weiss, Data Structures & Alg's 19

• DeleteMin operation of the priority queue
ADT corresponds to the removal of the
root key from the heap

• The removal algorithm consists of three
steps
– Replace the root key with the key of the last

node w

– Restore the heap-order property (known as
percolate down)

Example: DeleteMin

2014-02-05 Weiss, Data Structures & Alg's 20

Figure 6.9 Creation of the hole at the root

Example: DeleteMin

2014-02-05 Weiss, Data Structures & Alg's 21

Figure 6.10 Next two step in DeleteMin

Example: DeleteMin

2014-02-05 Weiss, Data Structures & Alg's 22

Figure 6.11 Last two steps in DeleteMin

DeleteMin

2014-02-05 Weiss, Data Structures & Alg's 23

BuildHeap operation

2014-02-05 Weiss, Data Structures & Alg's 24

• Takes as input N keys and places them
into an empty heap

• Can be done with N successive Insert
operations, which takes O(N* logN) worst
time.

• A solution is to place the N keys into the
tree in any order, maintaining the structure
property.

• Create a heap-ordered tree using the following
algorithm

BuildHeap operation

2014-02-05 Weiss, Data Structures & Alg's 25

N = 15

PercolateDown(7)

BuildHeap operation

2014-02-05 Weiss, Data Structures & Alg's 26

Figure 6.15 After PercolateDown(7)

BuildHeap operation

2014-02-05 Weiss, Data Structures & Alg's 27

Figure 6.16 After PercolateDown(6)

BuildHeap operation

2014-02-05 Weiss, Data Structures & Alg's 28

Figure 6.17 After PercolateDown(4)

BuildHeap operation

2014-02-05 Weiss, Data Structures & Alg's 29

Figure 6.18 After PercolateDown(2)

BuildHeap operation

2014-02-05 Weiss, Data Structures & Alg's 30

Figure 6.18 after PercolateDown(1)

 For the perfect binary tree of height h containing

2h+1 – 1 nodes, the sum of the heights of the nodes

is 2h+1 – 1 – (h + 1)

Theorem

2014-02-05 Weiss, Data Structures & Alg's 31

1

2

22

keys

h(=4)

h-1

h-2

height

23 h-3

• Like a binary heap except that all nodes
have d children

d-Heaps

2014-02-05 Weiss, Data Structures & Alg's 32

Figure 6.19 A sample 3-heap

• Much shallower than a binary heap

• Running time of Inserts is O (logd N)

• For DeleteMin, the minimum of d children

must be found
– Could be expensive for large d

– Requires d -1 comparisons

– O (d * logd N)

• When implemented on an array, d is a power

of 2 for bit shift for division & multiplication

Properties of d-Heaps

2014-02-05 Weiss, Data Structures & Alg's 33

• Combining two heaps into one

• A few ways of implementing heaps so that
the running time of a Merge is O (logN)

– Leftist Heaps

– Skew Heaps

– Binomial Queues

Merging

2014-02-05 Weiss, Data Structures & Alg's 34

• Is a binary tree

• Has both a structural property and an
ordering property.

• Ordering property is same as ordinary heap
ordering property

• Structural property is different: is not
perfectly balanced, but actually attempts to
be unbalanced.

• Defined using the null path length

Leftist Heap

2014-02-05 Weiss, Data Structures & Alg's 35

• Npl(X) of any node X: the length of the
shortest path from X to a node without two
children.

• Npl(X) = 0 when X is a node with zero or
one child

• Npl(NULL) = -1.

• Npl(X) = 1 + Npl(Y) where Y is a child of X
with a minimum null path length.

Null path length

2014-02-05 Weiss, Data Structures & Alg's 36

• For a node X in the heap, Npl(LCX) >= Npl(RCX)
where LCX and RCX are left child and right child
of X, respectively

Leftist heap property

2014-02-05 Weiss, Data Structures & Alg's 37

Figure 6.20 Null path lengths for two trees; only the left tree is leftist

• The tree is unbalanced and biases deeply
toward the left.

• The tree has a left deep paths while the
right path ought to be short

 (Theorem 6.2)

 A leftist tree with r nodes on the right path
must have at least 2r -1 nodes

 => proof by induction… (you try!!!)

Observations

2014-02-05 Weiss, Data Structures & Alg's 38

Type declaration

2014-02-05 Weiss, Data Structures & Alg's 39

Driving Routine for Merging

2014-02-05 Weiss, Data Structures & Alg's 40

Actual Merging Routine

2014-02-05 Weiss, Data Structures & Alg's 41

Leftist Heap Merge

2014-02-05 Weiss, Data Structures & Alg's 42

Figure 6.21 Two leftist heaps H1 and H2

Leftist Heap Merge

2014-02-05 Weiss, Data Structures & Alg's 43

Figure 6.21 Two leftist heaps H2 and right subheap of H1

Leftist Heap Merge

2014-02-05 Weiss, Data Structures & Alg's 44

Figure 6.21 Two right subheaps of H1 and H2

Leftist Heap Merge

2014-02-05 Weiss, Data Structures & Alg's 45

Figure 6.21 Right subheap continued

merge

Leftist Heap Merge

2014-02-05 Weiss, Data Structures & Alg's 46

Figure 6.22 Result of merging H2 with H1’s right subheap

merge

Leftist Heap Merge

2014-02-05 Weiss, Data Structures & Alg's 47

Figure 6.22 Result of merging H2 with H1’s right subheap

Leftist Heap Merge

2014-02-05 Weiss, Data Structures & Alg's 48

Figure 6.21 Two leftist heaps H1 and H2

Leftist Heap Merge

2014-02-05 Weiss, Data Structures & Alg's 49

Figure 6.21 Two leftist heaps H1 and H2

Leftist Heap Merge

2014-02-05 Weiss, Data Structures & Alg's 50

Figure 6.22 Result of merging H2 with H1’s right subheap

Leftist Heap Merge

2014-02-05 Weiss, Data Structures & Alg's 51

Figure 6.23 Result of attaching leftist heap of previous figure as H1’s right child

Npl = 1 Npl = 2

Leftist Heap Merge

2014-02-05 Weiss, Data Structures & Alg's 52

Figure 6.24 Result of swapping children H1’s root

Leftist Heap Insertion

2014-02-05 Weiss, Data Structures & Alg's 53

Leftist Heap DeleteMin

2014-02-05 Weiss, Data Structures & Alg's 54

