

School of Electrical Engineering

Korea University

Data Structures and Algorithms

2014-02-05 Weiss, Data Structures & Alg's 1

- Dynamic Hashing -

Dynamic External Hashing

Extendible Hashing

use an access structure in addition to the file

based on the result of the hash function to the

search field

similar to index but based on the search field.

 Linear Hashing

do not need any access structure

based on a sequence of hash functions

Extendible Hashing(1)

A directory can be stored on disk, and it expands

or shrinks dynamically. Directory entries point to

the disk blocks that contain the stored records.

A directory of 2d bucket addresses, where d is

called the global depth of the directory.

The first d bits of a hash value as an index into

the directory.

Several directory locations with the same first d’

(local depth) bit for their hash values may contain

the same bucket address if all the records that

hash to these locations fit in a single bucket.

Fig 5.13 Structure of the extendible hashing scheme.

Extendible Hashing(2)

 Incrementing d by one
Doubling the number of entries in the directory

When a bucket, whose d’ is equal to d, overflows.

Decrementing d by one
Halving the number of entries in the directory

When d > d’ for all buckets after some deletions.

Does not require an overflow area.

Two block accesses for record retrieval.
One for directory

One for bucket

Managing directory

When a bucket with d’ = d overflows,

split the bucket

distribute records based on (d+1)th bit

double the directory

adjust the directory entries

When d > d’ for all the buckets,

halve the directory

adjust the directory entries

Extendible hashing : 예제(1)

 Directory는 크기 4의 배열 (내용은 bucket에 대한 pointer)

 각 bucket은 최대 4개의 data entry 저장

 h(k) 값의 binary 수의 마지막 2 bit를 directory에 적용

2

00

01

10

11

2

4* 12* 32* 16*

2

1* 5* 21*

2

10*

2

15* 7* 19*

directory

data page

 local depth
global depth

(예) insert 13
13 mod 4 = 1(01)

Extendible hashing : 예제(2)

2

00

01

10

11

2

4* 12* 32* 16*

2

1* 5* 21*

2

10*

2

15* 7* 19*

2

1* 5* 21* 13*

directory

data page

 local depth
global depth

(예)
 insert 13 (01)

Extendible hashing : 예제(3)

 full bucket에 data entry insert

 (예) insert 20 (20 mod 4 = 0 (00))

11

10

01

00

2

32* 12* 16* 4*

2

21* 5* 13* 1*

2

10*

2

19* 7* 15*

2

 local depth
global depth

Split the bucket.
Double directory.

11

10

01

00

2

32* 12* 16* 4*

2

21* 5* 13* 1*

2

10*

2

19* 7* 15*

2

 local depth
global depth

2

4* 12* 32* 16*

2

32* 16*

2

4* 12* 20*

Extendible hashing : 예제(4)

11

10

01

00

2

32* 12* 16* 4*

2

21* 5* 13* 1*

2

10*

2

19* 7* 15*

2

 local depth
global depth

2

4* 12* 32* 16*

2

32* 16*

2

4* 12* 20*

3

32* 16*

3

21* 5* 13* 1*

2

10*

2

19* 7* 15*

2

 local depth
global depth

20* 12* 4*

3 111

110

101

100

011

010

001

000

Extendible hashing : 예제(5)

(예) insert 9 (9 mod 4 = 1 (01))

2

5* 21* 13*

3

32* 16*

3

21* 5* 13* 1*

2

10*

2

19* 7* 15*

2

 local depth
global depth

20* 12* 4*

3 111

110

101

100

011

010

001

000

3

32* 16*

3

9* 1*

3

10*

2

19* 7* 15*

2

 local depth
global depth

20* 12* 4*

3 111

110

101

100

011

010

001

000

3

5* 21* 13*

Properties

Advantages

Performance doesn’t degrade as the file grows

No additional bucket space allocated for future growth

Negligible directory space

Minor reorganization for splitting (redistribution occurs

in the overflowed bucket only)

Disadvantage

Two block accesses: for directory, and for the bucket

One block access in static hashing.

Linear Hashing

Dynamic expansion/shrinking of buckets without

a directory

Maintain overflow chains for each bucket

For every overflow, buckets are split in the linear

order.

The overflowed bucket will eventually be split by

the linear order → delayed split.

Any records hashed to bucket k based on hi will

hash to bucket k or bucket k+M based on hi+1.

(Ex) h1(r) = r mod M / h2(r) = r mod 2M / h3(r) = r mod 4M

Operations

When a collision occurs,
put the record into its overflow chain

split the bucket k (starting from 0) pointed by n into
bucket k and bucket k+M

redistribute the records into the split buckets(k, k+M)

using another hash function with hi+1

To retrieve a record with key K
apply hash function hi

hi(K) < n, apply hi+1(K)

When n = M
replace hash function and initialize n to 0

Search Algorithm for linear hashing

 if n = 0

 then m ← hj(k)

 else begin

 m ← hj(k)

 if m < n then m ← hj+1(k)

 end

 search the bucket whose hash value is m

(and its overflow if any)

Buckets during a Round

Bucket to be split next

Buckets split in this round:
If hlevel(key) is in this range,
must use hlevel+1(key) to decide
if entry is in split image bucket.

Split image buckets:
Created in this round by
splitting other buckets

Buckets that existed at
the beginning of this round:
The range of hlevel

Linear Hashing 예제(1)

36 44 32

5 25 9

10 18 30 14

7 35 11 31

00

01

10

11 011

010

001

000

Primary

bucket page

Data entry r

with h(r)=5

PRIMARY
PAGE

Level=0, N=4

n(ext)=0
h1

h0
OVERFLOW

PAGE

Linear hashing 예제(2)

32

5 25 9

10 18 30 14

7 35 11 31

Level=0

n=1 n=1

36 44

43

32

5 25 37 9

10 18 30 14

7 35 11 31

36 44

43

(a) Insert a record with 43

split

(b) Insert a record with 37

Linear hashing 예제(3)

32

25 9

10 18 30 14

36 44

7 35 11 31 43

29 37 5

n=2

32

25 9

10 18 34 66

36 44

7 35 11 31 43

29 37 5

22 30 14

n=3

(c) Insert a record with 29 (d) Insert a record with 22,66,34

Level=0

Linear hashing 예제(4)

32

25 9

10 18 34 66

36 44

11 35 43

50

29 37 5

22 30 14

n=0

7 31 (e) Insert a record with 50

Level=1

