Data Structures and Algorithms

School of Electrical Engineering Korea University

Analysis of algorithms (Chap. 1-2)

School of Electrical Engineering Korea University

Overview

Problem

Machine independent
Machine dependent

Algorithm

- Algorithm definition
- A finite sequence of instructions to solve a specific problem
- Each instruction should be finished within a finite amount of time
- Amount of resources such as time or space for the execution

Algorithm

- Algorithm description tools
- English statements
- Pseudo code
- Programming language

Algorithm

- Algorithm Design Technique
- Divide-and-Conquer
- Heuristics
- Dynamic programming
- Backtracking
- Branch and bound

Procedure of writing a program

1. Problem specification
2. Understanding the problem
3. Thinking about how to solve it
4. Writing code with input data
5. Repeat run \& revise

실행시간을 짧게 하려면

- 고속 컴퓨터
- 다수의 컴퓨터
- 우수한 프로그램
- 효과적인 자료저장, 추출방식

등이 확보 되도록

Two (resource) issues

- Running time (execution time) seconds, minutes, hours,...
- Space(memory) requirement Kbytes, Mbytes, Gbytes,...

Better Programs

- Shorter estimated running time to solve the problem
- Way to access data
$\mathrm{O}(\mathrm{N}), \mathrm{O}(\log \mathrm{N})$
- Readability / easy debugging

How to get running times?

- Experiments
- Theoretical-mathematical analysis by estimation / counting
- Topic of this chapter.

Analysis of Algorithms!

Input

Algorithm

Output

Running times

- Linear - N
- Logarithmic - log N
- Polynomial $-\sum b_{k} N^{k}=b_{0}+b_{1} N+b_{2} N^{2}+\ldots$
- Exponential - a^{N}
- (in between) $-N \sqrt{N}, \log ^{2} N$

Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a method like system.currentTimeMillis() to get an accurate measure of the actual running time
- Plot the results

Limitations of Experiments

- Have to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on the inputs which are not considered in the experiment.
- For fair comparison of two algorithms, the same hardware and software environments should be used

Input-dependent exec. time

- Best-case exec. time: minimum
- Worst -case exec. time : maximum
- Avg.-case exec. time : in the middle

Pseudo-code

- High-level description of an algorithm
- More structured than English prose
- Less detailed than actual program
- Preferred notation for describing algorithms
- Hides program design details

Ex: find max of an array
Algorithm arrayMax(A, n)
Input array \boldsymbol{A} of \boldsymbol{n} integers
Output maximum element of A
currentMax $\leftarrow A[0]$
for $i \leftarrow 1$ to $n-1$ do
if $A[i]>$ currentMax then currentMax $\leftarrow A[i]$
return currentMax

Pseudo-code Details

- Control flow
- if ... then ... [else ...]
- while ... do ...
- repeat ... until ...
- for ... do ...
- Indentation replaces braces
- Method declaration

Algorithm method (arg [, arg...])
Input ...
Output ...

Pseudo-code Details

- Method call
var.method (arg [, arg...])
- Return value
return expression
- Expressions
\leftarrow Assignment (like $=$ in Java)
$=$ Equality testing (like $==$ in Java)
n^{2} Superscripts and other mathematical formatting allowed

Growth Rate of Running Time

- Changing the hardware/ software environment
- affects $T(n)$ by a constant factor, but
- does not alter the growth rate of $\boldsymbol{T}(\boldsymbol{n})$
- The linear growth rate of the running time $\boldsymbol{T}(\boldsymbol{n})$ is an intrinsic property of algorithm arrayMax

Growth Rates

- Growth rates of functions:
- Linear $\approx n$
- Quadratic $\approx n^{2}$
- Cubic $\approx n^{3}$
- In a log-log chart, the slope of the line corresponds to the growth rate of the function

Growth Rates

Notations

- Focus on order of magnitude $\mathrm{O}(\mathrm{N}), \mathrm{O}(\log \mathrm{N}), \mathrm{O}(\mathrm{N} \log \mathrm{N})$
- Big Oh, Theta, Omega

$$
O
$$

Ω

- Constant is not significant

$$
\begin{aligned}
& 1.5 \mathrm{~N} \rightarrow O(\mathrm{~N}) \\
& 120 \mathrm{~N} \rightarrow O(\mathrm{~N})
\end{aligned}
$$

- Lower ordered terms are ignored

$$
16 N^{3}+6 N->O\left(N^{3}\right)
$$

Big-Oh Notation

- Given functions $f(n)$ and $g(n)$, we say that $\boldsymbol{f}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$ if there are positive constants c and n_{0} such that

$$
f(n) \leq c * g(n) \text { for } n \geq n_{0}
$$

(Ex) $2 n+10$ is $O(n)$
Proof: $2 \boldsymbol{n}+\mathbf{1 0} \leq \boldsymbol{c} n$

$$
\begin{aligned}
& (c-2) n \geq 10 \\
& n \geq 10 /(c-2) \\
\therefore \quad & c=3 \text { and } n_{0}=10
\end{aligned}
$$

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement " $f(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$ " means that the growth rate of $f(\boldsymbol{n})$ is no more than the growth rate of $g(\boldsymbol{n})$
- We can use the big-Oh notation to rank functions according to their growth rate

	$f(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$	$\boldsymbol{g}(\boldsymbol{n})$ is $\boldsymbol{O}(f(\boldsymbol{n}))$
$\boldsymbol{g}(\boldsymbol{n})$ grows more	Yes	No
$\boldsymbol{f (n) \text { grows more }}$	No	Yes
Same growth	Yes	Yes

Big-Oh Rules

- If is $f(n)$ a polynomial of degree d, then $f(n)$ is $\boldsymbol{O}\left(\boldsymbol{n}^{d}\right)$, i.e.,
\checkmark Drop lower-order terms
\checkmark Drop constant factors
- Use the smallest possible class of functions
- Say " $2 n$ is $O(n)$ " instead of " $2 n$ is $O\left(n^{2}\right)$ "
- Use the simplest expression of the class
- Say " $3 n+5$ is $\boldsymbol{O}(n)$ " instead of " $3 n+5$ is $\boldsymbol{O}(3 n)$ "

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
- We find the worst-case number of primitive operations executed as a function of the input size
- We express this function with big-Oh notation
- (Ex)
- We determine that algorithm arrayMax executes at most $7 n-1$ primitive operations
- We say that algorithm arrayMax "runs in $\boldsymbol{O}(\boldsymbol{n})$ time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Theoretical Analysis-alternative

- Uses a high-level description of the algorithm instead of an implementation
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Computation Model

- Artificial machine with basic arithmetic operations such as +, -, *, /
- All with the same computing time - one unit (second?)
- How real ? $->$ asymptotic(for big N)

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important

(Ex)

- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

Counting Primitive Operations

- By inspecting the pseudocode, we can determine the max number of primitive operations executed by an algorithm, as a function of the input size

Algorithm arrayMax (A, n) currentMax $\leftarrow A$ [0]
for $\boldsymbol{i} \leftarrow 1$ to $\boldsymbol{n}-1$ do
if $A[i]>$ currentMax then currentMax $\leftarrow A[i]$ return currentMax

> \# operations
> 1
> n
> ($n-1$)
> $(n-1)$
> 1
> Total $3 n$

예제: $\sum_{k=1}^{N} k^{3}$

int Sum (int N) \{ int i, PartialSum;

PartialSum $=0$;
for ($\mathrm{i}=1 ; \mathrm{i}<=\mathrm{N} ; \mathrm{i}++$)
PartialSum $+=\mathrm{i} * \mathrm{i} * \mathrm{i}$;
return PartialSum;

Prefix Averages (Quadratic)

- The following algorithm computes prefix averages in quadratic time by applying the definition

Algorithm prefixAverages $1(X, n)$
Input array \boldsymbol{X} of \boldsymbol{n} integers
Output array \boldsymbol{A} of prefix averages of \boldsymbol{X} \#operations
$A \leftarrow$ new array of \boldsymbol{n} integers

$$
n
$$

for $i \leftarrow 0$ to $n-1$ do

$$
\begin{aligned}
& s \leftarrow X[0] \\
& \text { for } j \leftarrow 1 \text { to } i \text { do } \\
& s \leftarrow s+X[j] \\
& A[i] \leftarrow s /(i+1)
\end{aligned}
$$

$$
n
$$

$$
n
$$

$$
1+2+\ldots+(n-1)
$$

$$
1+2+\ldots+(n-1)
$$

$$
n
$$

return A
1

Simple Algorithms

- Finding a maximum(or min.)

$$
T(N)=O(N)
$$

- Sort

$$
T(N)=O(N \log N)
$$

- Binary Search

$$
T(N)=O(\log N)
$$

Binary Search

- Algorithm - very fundamental, very important! listed in Figure 2.9 on page 30
- Running time

$$
T(N)=O(\log N)
$$

Algorithm

- Algorithm efficiency in terms of
- Time complexity
- Space complexity
- Issues
- How to estimate the time required for a program
- How to reduce the running time of a program
- The results of careless use of recursion

Time complexity

- Algorithm used
- Input size
- $T(n)$: function on input size n
$-\mathrm{T}_{\text {avg }}(\mathrm{N})$: Average running time
$-\mathrm{T}_{\text {worst }}(\mathrm{N})$: Worst running time
- $\mathrm{T}_{\text {avg }}(\mathrm{N})$ often reflects typical behavior
- $\mathrm{T}_{\text {worst }}(\mathrm{N})$ represents a guarantee for performance on any possible input

Definitions

- Establish a relative order among functions
- We compare relative rates of growth

1. $T(N)=O(f(N))$ if there are positive constants c and n_{0} such that $T(N) \leq c^{*} f(N)$ when $N \geq n_{0}$ (Big-Oh)

- The growth rate of $T(N)$ is less than or equal to that of $f(N)$

2. $\quad T(n)=\Omega(g(N))$ if there are positive constants c and n_{0} such that $T(N) \geq c * g(N)$ when $N \geq n_{0}$ (Omega)

- The growth rate of $T(N)$ is greater than or equal to that of $g(N)$

Meaning

3. $T(N)=\boldsymbol{\theta}(h(N))$ if and only if $T(n)=O(h(N))$ and $T(n)=$ $\Omega(h(N))$ (Theta)

- The growth rate of $T(N)$ equals the growth rate of $h(N)$

4. $\quad T(N)=O(p(N))$ if $T(n)=O(p(N))$ and $T(n) \neq \boldsymbol{\theta}(p(N))$ (Little-oh)

- The growth rate of $T(N)$ is less than the growth rate of $p(N)$.

Algorithm analysis

- Definition 1:
$T(n)=O(f(n))$ if there are positive constants c and n_{0} such that $T(n) \leq c * f(n)$ for $n \geq n_{0}$

Says that eventually there is some point n past which $c * f(n)$ is always at least as large as $T(n)$, so that if constant factors are ignored, $f(n)$ is at least as big as $T(n)$.

Ex 1: $T(n)=(n+1)^{2}=O\left(n^{2}\right)$
Ex 2: $T(n)=3 n^{3}+2 n^{2}=O\left(n^{3}\right)$

Algorithm analysis

Ex 1:T(n) $=(n+1)^{2}=O\left(n^{2}\right)$
<proof>
Show $T(n)=(n+1)^{2} \leq c * n^{2}$ for some c and $n \geq n_{0}$
For $c=4, \quad(n+1)^{2} \leq 4 n^{2}$

$$
\begin{aligned}
& 3 n^{2}-2 n-1 \geq 0 \\
& n \geq 1 \rightarrow n_{0}=1
\end{aligned}
$$

$$
T(n)=(n+1)^{2} \leq 4 n^{2} \text { for } c=4, n \geq 1
$$

Algorithm analysis

Ex 2: $T(n)=3 n^{3}+2 n^{2}=O\left(n^{3}\right)$
<proof>
Show $T(n)=3 n^{3}+2 n^{2} \leq c n^{3}$ for some c and $n \geq n_{0}$
For $\mathrm{c}=4, \quad 3 n^{3}+2 n^{2} \leq 4 n^{3}$

$$
n^{3}-2 n^{2} \geq 0
$$

$$
\mathrm{n} \geq 2 \rightarrow \mathrm{n}_{0}=2
$$

$T(n)=3 n^{3}+2 n^{2} \leq 4 n^{3}$ for $c=4, n \geq 2$

Algorithm analysis

- Definition 2 :
$T(n)=\Omega(f(n))$ if there are positive constants c and n_{0} such that $T(n) \geq c * f(n)$ for $n \geq n_{0}$

$$
\text { Ex 4: } T(n)=n^{3}+2 n^{2}=\Omega\left(n^{3}\right)
$$

<Proof>
Show $T(n)=n^{3}+2 n^{2} \geq c n^{3}$ for $c, n \geq n_{0}$
For $\mathrm{c}=1, \mathrm{n}^{3}+2 \mathrm{n}^{2} \geq \mathrm{n}^{3}$

$$
2 n^{2} \geq 0 \quad \rightarrow n \geq 1
$$

$$
T(n)=n^{3}+2 n^{2} \geq n^{3} \text { for } c=1, n \geq 1
$$

Algorithm analysis

- Definition 3 :
$\mathrm{T}(\mathrm{n})$ is $\boldsymbol{\Theta}(\mathrm{f}(\mathrm{n}))$ if $\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{f}(\mathrm{n}))$ and $\mathrm{T}(\mathrm{n})=\Omega(\mathrm{f}(\mathrm{n}))$
- Definition 4 :
$T(n)$ is $o(f(n))$ if $T(n)=O(f(n))$ and $T(n) \neq \boldsymbol{\Theta}(f(n))$

Algorithm analysis

- Time complexity comparison
- Relative growth rate for large n
- L'Hospital's rule: $\lim _{n \rightarrow \infty} f(n) / g(n)$

$$
\begin{aligned}
& 0: f(n)<g(n) \text { for large } n \rightarrow f(n)=O(g(n)), o(g(n)) \\
& c: f(n)=c * g(n) \text { for large } n \rightarrow f(n)=\theta(g(n)) \\
& \infty: f(n)>g(n) \text { for large } n \rightarrow f(n)=\Omega(g(n)), g(n)=o(f(n)) \\
& \text { oscillate }: \text { no relation }
\end{aligned}
$$

Ex) $2^{n}>n^{3}>n^{2} \log n>n^{2}>n \operatorname{logn}>n>\log ^{3} n>\log n>c$

Algorithm analysis

- Constant factor
- $O\left(n^{2}\right)$ vs $O(1000 n)$

$n \leq 1000 \rightarrow O\left(n^{2}\right)$
$n>1000 \rightarrow O(1000 n)$
For $n \rightarrow \infty, O\left(n^{2}\right)>O(n)$

Growth rates of typical functions

Function	Name
c	Constant
$\log ^{2}$	Logarithmic
$\log ^{2} N$	Log-squared
N	Linear
$N \log N$	
N^{2}	Quadratic
N^{3}	Cubic
2^{N}	Exponential

Figure 2.1 Typical growth rates

Maximum subsequence sum algorithms

- Given (possibly negative) integers $\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{\mathbf{N}}$, find the maximum value of $\sum_{k=i}^{j} \mathbf{A}_{k}$. (For convenience, the maximum subsequence sum is 0 if all the integers are negative.)
(Ex) -2, 11, -4, 13, -5, -2

The answer is 20 (subsequence $11,-4,13$)

Maximum subsequence sum algorithm 1

MaxSubsequenceSum (const int $A[$, int N) \{ int ThisSum, MaxSum, i, j, k;
/* 1*/
/* 2*/
/* 3*/
/* 4*/
/* 5*/
/* 6*/
/* 7*/
/* 8*/
/* 9*/
MaxSum $=0$;
for ($\mathbf{i}=0 ; \mathbf{i}<\mathbf{N} ; \mathbf{i + +}$)
for ($\mathbf{j}=\mathrm{i} ; \mathrm{j}<\mathrm{N} ; \mathrm{j}++$)
\{
ThisSum $=0$;
for $(k=i ; k<=j ; k++)$
ThisSum += A[k];
if(ThisSum > MaxSum)
MaxSum = ThisSum;
return MaxSum;

Maximum subsequence sum algorithm 2

```
MaxSubSequenceSum ( const int \(A[\) ], int N )
\{
int ThisSum, MaxSum, i, j;
MaxSum \(=0\)
for ( \(\mathbf{i}=0 ; i<N ; i++\) )
    ThisSum = 0;
    for ( \(\mathbf{j}=\mathrm{i} ; \mathrm{j}<\mathrm{N} ; \mathrm{j}++\) )
    \{
    ThisSum += A[ j ];
    if( ThisSum > MaxSum )
        MaxSum = ThisSum;
    \}
/* 8*/ return MaxSum;
/* \(1 * /\)
/* \(2 * /\)
/* \(3 * /\)
/* \(4 * /\)
/* \(5 * /\)
/* \(6 * /\)
/* \(7 * /\)

\section*{Maximum subsequence sum algorithm 3}
/* 2*/
/* 3*/
/* 4*/
/* 5*/
/* 6*/
/* 7*/
/* 8*人
/*10*/
/*11*/
/*12*/
```

```
```

MaxSubSum(const int A[], int Left, int Right)

```
```

MaxSubSum(const int A[], int Left, int Right)
{
{
int MaxLeftSum, MaxRightSum;
int MaxLeftSum, MaxRightSum;
int MaxLeftBorderSum, MaxRightBorderSum;
int MaxLeftBorderSum, MaxRightBorderSum;
int LeftBorderSum, RightBorderSum;
int LeftBorderSum, RightBorderSum;
int Center, i;
int Center, i;
/* 1*/ if(Left == Right) /* Base Case */
/* 1*/ if(Left == Right) /* Base Case */

```
    if( A[ Left ] > O )
```

 if(A[Left] > O)
 return A[Left];
 return A[Left];
 e7se
 e7se
 return 0;
 return 0;
 Center = (Left + Right) / 2;
Center = (Left + Right) / 2;
MaxLeftSum = MaxSubSum(A, Left, Center);
MaxLeftSum = MaxSubSum(A, Left, Center);
MaxRightSum = MaxSubSum(A, Center + 1, Right);
MaxRightSum = MaxSubSum(A, Center + 1, Right);
MaxLeftBorderSum = 0; LeftBorderSum = 0
MaxLeftBorderSum = 0; LeftBorderSum = 0
for(i = Center; i >= Left; i--)
for(i = Center; i >= Left; i--)
{
{
LeftBorderSum += A[i];
LeftBorderSum += A[i];
if(LeftBorderSum > MaxLeftBorderSum)
if(LeftBorderSum > MaxLeftBorderSum)
MaxLeftBorderSum = LeftBorderSum;

```
    MaxLeftBorderSum = LeftBorderSum;
```


Maximum subsequence sum algorithm 3

```
/*13*/ MaxRightBorderSum = 0; RightBorderSum = 0;
/*14*/
/*15*/
/*16*/
/*17*/
/*18*/ return Max3( MaxLeftSum, MaxRightSum,
/*19*/
    for( i = Center + 1; i <= Right; i++ )
    {
        RightBorderSum += A[ i ];
        if( RightBorderSum > MaxRightBorderSum )
        MaxRightBorderSum = RightBorderSum;
    }
                                MaxLeftBorderSum + MaxRightBorderSum );
}
int
MaxSubsequenceSum( const int A[ ], int N )
{
    return MaxSubSum( A, 0, N - 1 );
}
```


Maximum subsequence sum algorithms 4

MaxSubsequenceSum (const int A[], int N) \{
int ThisSum, MaxSum, j;
/* 1*/
/* 2*/
/* 3*/
ThisSum += A[j];
if(ThisSum > MaxSum)
MaxSum = ThisSum;
else if(ThisSum < 0)
ThisSum = 0;
\}
/* 8*/ return MaxSum;

Maximum subsequence sum algorithms

Algorithm		1	2	3	4
Time		$\mathrm{O}\left(N^{3}\right)$	$\mathrm{O}\left(N^{2}\right)$	$\mathrm{O}(N \log N)$	$O(N)$
Input	$N=10$	0.00103	0.00045	0.00066	0.00034
Size	$N=100$	0.47015	0.01112	0.00486	0.00063
	$N=1,000$	448.77	1.1233	0.05843	0.00333
	$N=10,000$	NA	111.13	0.68631	0.03042
	$N=100,000$	NA	NA	8.0113	0.29832

Figure 2.2 Running times of several algorithms for maximum subsequence sum (in seconds)

Maximum subsequence sum algorithms

Figure 2.3 Plot (N vs. milliseconds) of various maximum subsequence sum algorithms

Maximum subsequence sum algorithms

Figure 2.4 Plot (N vs. seconds) of various maximum subsequence sum algorithms

Algorithm analysis

Property 1: If $T_{1}(n)=O(f(n))$ and $T_{2}(n)=O(g(n))$,
$T_{1}(n)+T_{2}(n)=O(\max (f(n), g(n))$
<proof> By definition,

$$
\begin{aligned}
& T_{1}(n) \leq c_{1} f(n) \text { for } c_{1}, n>n_{1} \\
& T_{2}(n) \leq c_{2} f(n) \text { for } c_{2}, n>n_{2},
\end{aligned}
$$

$T_{1}(n)+T_{2}(n)$
$\leq \mathrm{c}_{1} \mathrm{f}(\mathrm{n})+\mathrm{c}_{2} \mathrm{f}(\mathrm{n})$
$\leq c_{1} \max (f(n), g(n))+c_{2} \max (f(n), g(n))$ for $n \geq \max \left(n_{1}, n_{2}\right)$
$\leq\left(\mathrm{c}_{1}+\mathrm{c}_{2}\right) \max \left(\mathrm{f}(\mathrm{n}), \mathrm{g}(\mathrm{n})\right.$) for $\mathrm{n} \geq \max \left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)$

Algorithm analysis

$$
\begin{array}{rl}
E x & 7: \\
T(n) & =T 1(n)+T 2(n)+T 3(n)=O\left(n^{2}\right)+O\left(n^{3}\right)+O(n \operatorname{logn}) \\
T(n) & =
\end{array}
$$

Ex 8: $T 1(n)=n^{4}$ if n is even, n^{2} if n is odd $T 2(n)=n^{2}$ if n is even, n^{3} if n is odd if n is even $\rightarrow T(n)=$ if n is odd $\rightarrow T(n)=$

Algorithm analysis

- Property 2: If $T(n)=O(f(n)+g(n))$ such that $g(n) \leq f(n)$ for all $n \geq n_{0}$

$$
T(n)=O(f(n))
$$

$$
E x) T(n)=O\left(n^{2}+n^{3}+\log n\right)
$$

- Property 3: If $T_{1}(n)=O(f(n))$ and $T_{2}(n)=O(g(n))$,

$$
T(n)=T_{1}(n) * T_{2}(n)=O(f(n) * g(n))
$$

- Property 4: $T(n)=O(c * f(n))=O(f(n))$

$$
\text { Ex) } O\left(4 / 3 n^{3}+1 / 2 n^{2}+2\right)=
$$

Model of Computation

	Simple instruction - add, multiply, comparison - assignment statement - conditional statement
Program \longrightarrowLoop - for statement - while statement - repeat statement	$\longrightarrow \mathbf{O}(1)$
	\longrightarrow \# of iteration * time for body
\longrightarrowProcedure Call - non-recursive - recursive	\longrightarrow Recursive function

Bubble sort

```
void Bubble (var A[1..n]) {
    int i, j, temp;
    for (i=1; i \leqn-1;i++)
        for (j=n; j \geq i+1;j--)
        if A[j-1] > A[j] {
            temp = A[j-1];
        A[j-1] = A[j];
        A[j] = temp
        }
```

$i=1$	$i=2$	$i=3$	
4	1	1	1
$\begin{array}{c}1 \\ \downarrow\end{array}$			
2	4	2	2
\downarrow	\downarrow		
3	2	4	3
\downarrow	\downarrow	\downarrow	
1	3	3	4

$T(n)=\sum_{i=1}^{n-1}(n-i) * 1=(n-1)+(n-2)+\ldots+1=n(n-1) / 2=O\left(n^{2}\right)$

Function Call

- Non-recursive Call

- Recursive Call

$$
T(n)=f(T(k)) \text { for various value of } k
$$

Factorial

```
int fact (int n) {
    if n <=1
        return 1
    else
        return n*fact(n-1)
}
```

$$
\begin{array}{rlrl}
T(n) & =T(n-1)+c & \text { if } n>1 \\
& =d & & \text { if } n=1
\end{array}
$$

Factorial

$$
\begin{array}{rlrl}
\mathrm{T}(\mathrm{n}) & =\mathrm{T}(\mathrm{n}-1)+\mathrm{c} & \text { if } \mathrm{n}>1 \\
& =\mathrm{d} & & \text { if } \mathrm{n}=1
\end{array}
$$

$$
\begin{aligned}
T(n) & =T(n-1)+c \\
& =[T(n-2)+c]+c=T(n-2)+2 c \\
& =[T(n-3)+c]+2 c=T(n-3)+3 c \\
& \ldots \ldots \\
& =T(1)+(n-1) c \\
& =d+(n-1) c \\
& =O(n)
\end{aligned}
$$

Mergesort

Example

Sorted sequence

Merge-sort

```
void Merge-sort( L, n) {
    if n<=1
        return L
    else {
        Merge-sort (L1, n/2);
        Merge-sort (L2, n/2);
        return merge (L1, L2, n/2);
}
```


Merge-sort

$$
\begin{aligned}
T(n) & =2 T(n / 2)+c_{1} n \text { if } n>1 \\
& =c_{2} \quad \text { if } n=1 \\
T(n) & =2 T(n / 2)+c_{1} n \\
& =2\left[2 T\left(n / 2^{2}\right)+c_{1} n / 2\right]+c_{1} n=2^{2} T\left(n / 2^{2}\right)+2 c_{1} n \\
& =2^{2}\left[2 T\left(n / 2^{3}\right)+c_{1} n / 2^{2}\right]+2 c_{1} n=2^{3} T\left(n / 2^{3}\right)+3 c_{1} n \\
& \ldots \\
& =2^{r} T\left(n / 2^{r}\right)+r c_{1} n \rightarrow n / 2 r=1, n=2 r, r=\operatorname{logn} \\
& =n c_{2}+c_{1} n \operatorname{logn} \\
& =O(n \operatorname{logn})
\end{aligned}
$$

Binary Search

\bullet	Search $\mathrm{x}(=16)$											
$\mathbf{1}$	from a sorted list A											
1	2	3	5	8	9	10	11	13	15	16	18	21
$\mathbf{8}$	24	26	30									

int binary-search (A, low, high, x) \{
mid $=($ low+high $) / 2$;
if $(\mathrm{A}[\mathrm{mid}]=\mathrm{x})$ then
return mid
else if ($\mathrm{A}[\mathrm{mid}]>\mathrm{x}$) then binary-search(A,low,mid-1,x) else binary-search(A,mid+1,high,x) \}

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =\mathrm{T}(\mathrm{n} / 2)+1 & & \text { if } \mathrm{n}>1 \\
& =1 & & \text { if } \mathrm{n}=1
\end{aligned}
$$

Binary Search

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =\mathrm{T}(\mathrm{n} / 2)+1 \text { if } \mathrm{n}>1 \\
& =1 \quad \text { if } \mathrm{n}=1 \\
\mathrm{~T}(\mathrm{n}) & =\mathrm{T}(\mathrm{n} / 2)+1 \\
& =\left[\mathrm{T}\left(\mathrm{n} / 2^{2}\right)+1\right]+1=\mathrm{T}\left(\mathrm{n} / 2^{2}\right)+2 \\
& =\left[\mathrm{T}\left(\mathrm{n} / 2^{3}\right)+1\right]+1=\mathrm{T}\left(\mathrm{n} / 2^{3}\right)+3 \\
& \ldots \\
& =\mathrm{T}\left(\mathrm{n} / 2^{\mathrm{r}}\right)+\mathrm{r} \rightarrow \mathrm{n} / 2^{\mathrm{r}}=1, \mathrm{n}=2^{\mathrm{r}}, \mathrm{r}=\operatorname{logn} \\
& =\mathrm{T}(1)+\operatorname{logn}=1+\operatorname{logn} \\
& =\mathrm{O}(\operatorname{logn})
\end{aligned}
$$

GCD(Greatest Common divisor)

GCD(Greatest Common Divisor)

(Theorem 2.1) If $M>N, M \bmod N<M / 2$

$$
\begin{aligned}
\text { <Proof> } & \\
\text { Case } 1: & \mathrm{N} \leq \mathrm{M} / 2 \\
& \mathrm{M} \bmod \mathrm{~N}<\mathrm{M} / 2
\end{aligned}
$$

Case 2: N > M/2
$M \bmod N \leq M-N<M / 2$

$$
\begin{array}{rlrl}
\mathrm{T}(\mathrm{n}) & =\mathrm{T}(\mathrm{n} / 2)+1 & & \text { if } \mathrm{n}>1 \\
& =1 & & \text { if } \mathrm{n}=1 \\
& =\mathrm{O}(\log n) &
\end{array}
$$

Fibonacci numbers

> long Fib (int n$)\{$
> if $(\mathrm{n}<=1)$
> return 1
> else
return $\operatorname{Fib}(n-1)+\operatorname{Fib}(n-2)$
\}
$T(n)=T(n-1)+T(n-2) \rightarrow T(n)<(5 / 3)^{k}=O\left((5 / 3)^{k}\right)$
<Proof> By induction
Base step: for $n=1, T(1)=1<(5 / 3)^{1}$
Induction step : Suppose it holds for $\mathbf{n} \leq k$. Then, we want to show it holds for $n=k+1$
(See page 6 of text.)

