

School of Electrical Engineering

Korea University

Data Structures and Algorithms

2014-02-05 Weiss, Data Structures & Alg's 1

School of Electrical Engineering

Korea University

Analysis of algorithms (Chap. 1-2)

2014-02-05 Weiss, Data Structures & Alg's 2

3

Overview

Problem Compile

Program

Input data

Machine
Execution

Output data

Compiler Computer
Architecture

Data structure

Algorithm

Machine dependent Machine independent

4

Algorithm

• Algorithm definition

– A finite sequence of instructions to solve a

specific problem

– Each instruction should be finished within a finite

amount of time

– Amount of resources such as time or space for

the execution

5

Algorithm

• Algorithm description tools

– English statements

– Pseudo code

– Programming language

6

Algorithm

• Algorithm Design Technique

– Divide-and-Conquer

– Heuristics

– Dynamic programming

– Backtracking

– Branch and bound

1. Problem specification

2. Understanding the problem

3. Thinking about how to solve it

4. Writing code with input data

5. Repeat run & revise

Procedure of writing a program

2014-02-05 Weiss, Data Structures & Alg's 7

• 고속 컴퓨터

• 다수의 컴퓨터

• 우수한 프로그램

• 효과적인 자료저장, 추출방식

 등이 확보 되도록

실행시간을 짧게 하려면

2014-02-05 Weiss, Data Structures & Alg's 8

• Running time (execution time)

 seconds, minutes, hours,…

• Space(memory) requirement

 Kbytes, Mbytes, Gbytes,…

Two (resource) issues

2014-02-05 Weiss, Data Structures & Alg's 9

• Shorter estimated running time to solve the
problem

• Way to access data

 O(N), O(log N)

• Readability / easy debugging

Better Programs

2014-02-05 Weiss, Data Structures & Alg's 10

• Experiments

• Theoretical-mathematical analysis by
estimation / counting

– Topic of this chapter.

How to get running times?

2014-02-05 Weiss, Data Structures & Alg's 11

Analysis of Algorithms!

Algorithm Input Output

2014-02-05 Weiss, Data Structures & Alg's 12

• Linear – N

• Logarithmic – log N

• Polynomial -

• Exponential -

• (in between) -

Running times

2014-02-05 Weiss, Data Structures & Alg's 13

Na

...2

210  NbNbbNb k

k

NNN 2log,

Experimental Studies

• Write a program
implementing the
algorithm

• Run the program with
inputs of varying size and
composition

• Use a method like
system.currentTimeMillis()
to get an accurate
measure of the actual
running time

• Plot the results

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size

T
im

e
 (

m
s
)

2014-02-05 Weiss, Data Structures & Alg's 14

• Have to implement the algorithm, which may
be difficult

• Results may not be indicative of the running
time on the inputs which are not considered
in the experiment.

• For fair comparison of two algorithms, the
same hardware and software environments
should be used

Limitations of Experiments

2014-02-05 Weiss, Data Structures & Alg's 15

• Best-case exec. time: minimum

• Worst -case exec. time : maximum

• Avg.-case exec. time : in the middle

Input-dependent exec. time

2014-02-05 Weiss, Data Structures & Alg's 16

• High-level description
of an algorithm

• More structured than
English prose

• Less detailed than
actual program

• Preferred notation for
describing algorithms

• Hides program design
details

Pseudo-code

2014-02-05 Weiss, Data Structures & Alg's 17

Algorithm arrayMax(A, n)

 Input array A of n integers

 Output maximum element of A

 currentMax  A[0]

 for i  1 to n  1 do

 if A[i]  currentMax then

 currentMax  A[i]

 return currentMax

Ex: find max of an array

Pseudo-code Details

• Control flow
– if … then … [else …]

– while … do …

– repeat … until …

– for … do …

– Indentation replaces braces

• Method declaration
 Algorithm method (arg [, arg…])

 Input …

 Output …

2014-02-05 Weiss, Data Structures & Alg's 18

Pseudo-code Details

• Method call
var.method (arg [, arg…])

• Return value
return expression

• Expressions
 Assignment

 (like  in Java)

 Equality testing
 (like  in Java)

n2 Superscripts and other
mathematical formatting
allowed

2014-02-05 Weiss, Data Structures & Alg's 19

• Changing the hardware/ software
environment
– affects T(n) by a constant factor, but

– does not alter the growth rate of T(n)

• The linear growth rate of the running time
T(n) is an intrinsic property of algorithm
arrayMax

Growth Rate of Running Time

2014-02-05 Weiss, Data Structures & Alg's 20

Growth Rates

• Growth rates of functions:
– Linear  n

– Quadratic  n2

– Cubic  n3

• In a log-log chart, the slope of the line
corresponds to the growth rate of the
function

2014-02-05 Weiss, Data Structures & Alg's 21

Growth Rates

2014-02-05 Weiss, Data Structures & Alg's 22

1E-1
1E+1
1E+3
1E+5
1E+7
1E+9

1E+11
1E+13
1E+15
1E+17
1E+19
1E+21
1E+23
1E+25
1E+27
1E+29

1E-1 1E+2 1E+5 1E+8

T
(n

)

n

Cubic

Quadratic

Linear

• Focus on order of magnitude

• Big Oh, Theta, Omega

• Constant is not significant

 1.5 N -> O(N)

 120 N -> O(N)

• Lower ordered terms are ignored

 16 N3 + 6 N -> O(N3)

Notations

2014-02-05 Weiss, Data Structures & Alg's 23

N) log O(N N), O(log O(N),

O

• Given functions f(n) and g(n), we say that
f(n) is O(g(n)) if there are positive constants
c and n0 such that

 f(n)  c*g(n) for n  n0

 (Ex) 2n  10 is O(n)

Proof: 2n  10  cn

 (c  2) n  10

 n  10/(c  2)

 ∴ c  3 and n0  10

Big-Oh Notation

2014-02-05 Weiss, Data Structures & Alg's 24

• The big-Oh notation gives an upper bound on the
growth rate of a function

• The statement “f(n) is O(g(n))” means that the growth
rate of f(n) is no more than the growth rate of g(n)

• We can use the big-Oh notation to rank functions
according to their growth rate

Big-Oh and Growth Rate

2014-02-05 Weiss, Data Structures & Alg's 25

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No

f(n) grows more No Yes

Same growth Yes Yes

• If is f(n) a polynomial of degree d, then f(n)
is O(nd), i.e.,

 Drop lower-order terms

 Drop constant factors

• Use the smallest possible class of functions
– Say “2n is O(n)” instead of “2n is O(n2)”

• Use the simplest expression of the class
– Say “3n  5 is O(n)” instead of “3n  5 is O(3n)”

Big-Oh Rules

2014-02-05 Weiss, Data Structures & Alg's 26

• The asymptotic analysis of an algorithm determines
the running time in big-Oh notation

• To perform the asymptotic analysis
– We find the worst-case number of primitive operations

executed as a function of the input size

– We express this function with big-Oh notation

• (Ex)
– We determine that algorithm arrayMax executes at most

7n  1 primitive operations

– We say that algorithm arrayMax “runs in O(n) time”

• Since constant factors and lower-order terms are
eventually dropped anyhow, we can disregard them
when counting primitive operations

Asymptotic Algorithm Analysis

2014-02-05 Weiss, Data Structures & Alg's 27

• Uses a high-level description of the
algorithm instead of an implementation

• Takes into account all possible inputs

• Allows us to evaluate the speed of an
algorithm independent of the
hardware/software environment

Theoretical Analysis-alternative

2014-02-05 Weiss, Data Structures & Alg's 28

• Artificial machine with basic arithmetic
operations such as +, -, *, /

• All with the same computing time – one unit

(second?)

• How real ? -> asymptotic(for big N)

Computation Model

2014-02-05 Weiss, Data Structures & Alg's 29

Primitive Operations

• Basic computations
performed by an
algorithm

• Identifiable in
pseudocode

• Largely independent
from the programming
language

• Exact definition not
important

(Ex)

• Evaluating an
expression

• Assigning a value
to a variable

• Indexing into an
array

• Calling a method

• Returning from a
method

2014-02-05 Weiss, Data Structures & Alg's 30

Counting Primitive Operations

• By inspecting the pseudocode, we can determine
the max number of primitive operations executed by
an algorithm, as a function of the input size

Algorithm arrayMax(A, n) # operations
 currentMax  A[0] 1

 for i  1 to n  1 do n

 if A[i]  currentMax then (n  1)

 currentMax  A[i] (n  1)

 return currentMax 1

 Total 3n

2014-02-05 Weiss, Data Structures & Alg's 31

int Sum (int N) {

 int i, PartialSum;

 PartialSum = 0;

 for (i=1; i<= N; i++)

 PartialSum += i * i * i;

 return PartialSum;

}

 예제:

2014-02-05 Weiss, Data Structures & Alg's 32




N

k

k
1

3

2014-02-05 Weiss, Data Structures & Alg's 33

Prefix Averages (Quadratic)

• The following algorithm computes prefix averages
in quadratic time by applying the definition

Algorithm prefixAverages1(X, n)
 Input array X of n integers
 Output array A of prefix averages of X
 A  new array of n integers
 for i  0 to n  1 do

 s  X[0]
 for j  1 to i do

 s  s + X[j]
 A[i]  s / (i + 1)
 return A

 #operations

 n

 n

 n
1 + 2 + …+ (n  1)
1 + 2 + …+ (n  1)
 n

 1

Simple Algorithms

- Finding a maximum(or min.)

- Sort

- Binary Search

O(N)Τ(Ν) 

)NO(NΤ(Ν) log 

N)O(Τ(Ν) log 

• Algorithm - very fundamental, very important!

 listed in Figure 2.9 on page 30

• Running time

Binary Search

2014-02-05 Weiss, Data Structures & Alg's 35

N)O(Τ(Ν) log 

36

Algorithm

• Algorithm efficiency in terms of

– Time complexity

– Space complexity

• Issues

– How to estimate the time required for a program

– How to reduce the running time of a program

– The results of careless use of recursion

37

Time complexity

• Algorithm used

• Input size

• T(n) : function on input size n

– Tavg(N): Average running time

– Tworst(N): Worst running time

• Tavg(N) often reflects typical behavior

• Tworst(N) represents a guarantee for performance on any

possible input

38

Definitions

• Establish a relative order among functions

• We compare relative rates of growth

1. T(N) = O (f (N)) if there are positive constants c and n0
such that T(N)  c* f(N) when N ≥ n0 (Big-Oh)

– The growth rate of T(N) is less than or equal to that
of f(N)

2. T(n) = Ω (g(N)) if there are positive constants c and n0
such that T(N) ≥ c*g(N) when N ≥ n0 (Omega)

– The growth rate of T(N) is greater than or equal to
that of g(N)

39

Meaning

3. T(N) = Θ (h(N)) if and only if T(n) = O (h(N)) and T(n) =
Ω(h(N)) (Theta)

– The growth rate of T(N) equals the growth rate of
h(N)

4. T(N) = o (p (N)) if T(n) = O (p(N)) and T(n) ≠ Θ (p(N))
(Little-oh)

– The growth rate of T(N) is less than the growth rate
of p(N).

40

Algorithm analysis

• Definition 1 :

 T(n) = O(f(n)) if there are positive constants c and n0

 such that T(n) ≤ c * f(n) for n ≥ n0

Says that eventually there is some point n past which
c * f(n) is always at least as large as T(n), so that if
constant factors are ignored, f(n) is at least as big asT(n).

Ex 1: T(n) = (n+1)2 = O(n2)

Ex 2: T(n) = 3n3 + 2n2 = O(n3)

41

Algorithm analysis

 <proof>

 Show T(n) = (n+1)2 ≤ c*n2 for some c and n ≥ n0

 For c =4, (n+1)2 ≤ 4n2

 3n2 - 2n –1 ≥ 0

 n ≥ 1  n0 = 1

 T(n) = (n+1)2 ≤ 4n2 for c =4, n ≥ 1

Ex 1: T(n) = (n+1)2 = O(n2)

42

Algorithm analysis

 <proof>

 Show T(n) = 3n3 + 2n2 ≤cn3 for some c and n ≥ n0

 For c =4, 3n3 + 2n2 ≤4n3

 n3 - 2n2 ≥ 0

 n ≥ 2  n0 = 2

 T(n) = 3n3 + 2n2 ≤ 4n3 for c =4, n ≥ 2

Ex 2: T(n) = 3n3 + 2n2 = O(n3)

44

Algorithm analysis

• Definition 2 :

T(n) = Ω (f(n)) if there are positive constants c and n0

 such that T(n) ≥ c * f(n) for n ≥ n0

 Ex 4: T(n) = n3 + 2n2 = Ω(n3)

 <Proof>

 Show T(n) = n3 + 2n2 ≥ cn3 for c, n ≥ n0

 For c =1, n3 + 2n2 ≥ n3

 2n2 ≥ 0  n ≥ 1

 T(n) = n3 + 2n2 ≥ n3 for c=1, n ≥ 1

45

Algorithm analysis

• Definition 3 :

 T(n) is Θ(f(n)) if T(n) = O(f(n)) and T(n) = Ω(f(n))

• Definition 4 :

 T(n) is o(f(n)) if T(n) = O(f(n)) and T(n) ≠ Θ(f(n))

46

Algorithm analysis

• Time complexity comparison

– Relative growth rate for large n

– L’Hospital’s rule: lim n ∞ f(n) / g(n)

 0 : f(n) < g(n) for large n  f(n) = O(g(n)), o(g(n))

 c : f(n) = c*g(n) for large n  f(n) = θ (g(n))

 ∞ : f(n) > g(n) for large n  f(n) = Ω(g(n)), g(n)=o(f(n))

 oscillate : no relation

 Ex) 2n > n3 > n2logn > n2 > nlogn > n > log3n > logn > c

47

Algorithm analysis

• Constant factor

– O(n2) vs O(1000n)

1000

n ≤ 1000  O(n2)

n > 1000  O(1000n)

For n  ∞, O(n2) > O(n)

n

1000n
n2

Growth rates of typical functions

Maximum subsequence sum algorithms

• Given (possibly negative) integers A1,A2,…,AN, find the
maximum value of ∑j

k=i
 Ak. (For convenience, the

maximum subsequence sum is 0 if all the integers are
negative.)

 (Ex) -2, 11, -4, 13, -5, -2

 The answer is 20 (subsequence 11, -4, 13)

Maximum subsequence sum algorithm 1

Maximum subsequence sum algorithm 2

Maximum subsequence sum algorithm 3

Maximum subsequence sum algorithm 3

Maximum subsequence sum algorithms 4

Maximum subsequence sum algorithms

Maximum subsequence sum algorithms

Maximum subsequence sum algorithms

58

Algorithm analysis

Property 1: If T1(n) = O(f(n)) and T2(n) = O(g(n)),

 T1(n) + T2(n) = O(max(f(n), g(n))

 <proof> By definition,

 T1(n) ≤c1f(n) for c1, n>n1

 T2(n) ≤c2f(n) for c2, n>n2

 T1(n) + T2(n)

 ≤ c1f(n) + c2f(n)

 ≤ c1 max(f(n), g(n)) + c2 max(f(n), g(n)) for n ≥ max(n1,n2)

 ≤ (c1 + c2) max(f(n), g(n)) for n ≥ max(n1,n2)

59

Algorithm analysis

 Ex 7: T(n) = T1(n) + T2(n) + T3(n) = O(n2) + O(n3) + O(nlogn)

 T(n) =

 Ex 8: T1(n) = n4 if n is even, n2 if n is odd

 T2(n) = n2 if n is even, n3 if n is odd

 if n is even  T(n) =

 if n is odd  T(n) =

60

Algorithm analysis

• Property 2: If T(n) = O(f(n)+g(n)) such that g(n)≤f(n) for all n ≥ n0

 T(n) = O(f(n))

 Ex) T(n) = O(n2 + n3 + logn)

• Property 3: If T1(n) = O(f(n)) and T2(n) = O(g(n)),

 T(n) = T1(n)*T2(n) = O(f(n)*g(n))

• Property 4: T(n) = O(c*f(n)) = O(f(n))

 Ex) O(4/3n3 + 1/2n2 + 2) =

61

Model of Computation

Program

Simple instruction
 - add, multiply, comparison

 - assignment statement

 - conditional statement

Loop
 - for statement

 - while statement

 - repeat statement

O(1)

of iteration * time for body

Procedure Call
 - non-recursive

 - recursive
 Recursive function

62

Bubble sort

 void Bubble (var A[1..n]) {

 int i, j, temp;

 for (i=1; i ≤n-1; i++)

 for (j=n; j ≥ i+1; j--)

 if A[j-1] > A[j] {

 temp = A[j-1];

 A[j-1] = A[j];

 A[j] = temp

 }

 }

4

2

3

1

1

4

2

3

1

2

4

3

1

2

3

4

i =1 i =2 i =3

 n-1

T(n) = ∑ (n-i) * 1 = (n-1) + (n-2) +…+ 1 = n(n-1)/2 = O(n2)

 i=1

63

Function Call

• Non-recursive Call

 Recursive Call

T(n) = f(T(k)) for various value of k

1

6

2 3

5 4

main
func1 func2 func3

call func1 call func2 call func3

64

Factorial

 int fact (int n) {

 if n <=1

 return 1

 else

 return n*fact(n-1)

}

T(n) = T(n-1) + c if n > 1

 = d if n = 1

65

Factorial

 T(n) = T(n-1) + c if n > 1

 = d if n = 1

 T(n) = T(n-1) + c

 = [T(n-2)+c]+c = T(n-2) + 2c

 = [T(n-3)+c]+2c= T(n-3) +3c

 …..

 = T(1) +(n-1)c

 = d + (n-1) c

 = O(n)

66

Mergesort

L1

L2

L1

 L2

sort

sort
L

5
6
1
2

sort

sort 4
3
8
9

1
2
5
6

3
4
8
9

1
2
3
4
5
6
8
9

merge

merge

67

Example

5 2 4 6 1 3 2 6

2 5 4 6 1 3 2 6

2 4 5 6 1 2 3 6

1 2 2 3 4 5 6 6

merge merge merge merge

merge merge

merge

Initial sequence

Sorted sequence

68

Merge-sort

 void Merge-sort(L, n) {

 if n <=1

 return L

 else {

 Merge-sort (L1, n/2);

 Merge-sort (L2, n/2);

 return merge (L1, L2, n/2);

 }

T(n) = 2T(n/2) + c1n if n > 1

 = c2 if n = 1

69

Merge-sort

T(n) = 2T(n/2) + c1n

 = 2[2T(n/ 22) + c1n/2]+ c1n = 22 T(n/ 22)+ 2c1n

 = 22[2T(n/ 23) + c1n/ 22]+ 2c1n = 23 T(n/ 23)+ 3c1n

 …

 = 2r T(n/2r)+ r c1n  n/2r = 1, n = 2r , r = logn

 = n c2+ c1nlogn

 = O(nlogn)

T(n) = 2T(n/2) + c1n if n > 1

 = c2 if n = 1

70

Binary Search

int binary-search (A, low, high, x) {

 mid = (low+high)/2;

 if (A[mid]=x) then

 return mid

 else if (A[mid]>x) then

 binary-search(A,low,mid-1,x)

 else binary-search(A,mid+1,high,x)

 }

T(n) = T(n/2) + 1 if n > 1

 = 1 if n = 1

1 2 3 5 8 9 10 11 13 15 16 18 21 24 26 30

1 2 3 4

 Search x(=16) from a sorted list A
16 8 1

71

Binary Search

T(n) = T(n/2) + 1 if n > 1

 = 1 if n = 1

 T(n) = T(n/2) + 1

 = [T(n/ 22) + 1] + 1 = T(n/ 22) + 2

 = [T(n/ 23) + 1] + 1 = T(n/ 23) + 3

 …

 = T(n/ 2r) + r  n/2r = 1, n = 2r , r = logn

 = T(1) + logn = 1 + logn

 = O(logn)

72

GCD(Greatest Common divisor)

 int GCD (M, N) {

 while (N!=0){

 rem = M % N;

 M = N;

 N = rem;

 }

 return M

 }

 M N rem

 36 15 6

 15 6 3

 6 3 0

 3 0

73

GCD(Greatest Common Divisor)

(Theorem 2.1) If M >N, M mod N < M/2

<Proof>

 Case 1 : N ≤ M/2

 M mod N < M/2

 Case 2 : N > M/2

 M mod N ≤ M-N < M/2

 T(n) = T(n/2) + 1 if n > 1

 = 1 if n = 1

 = O(logn)

M

M/2 N

M

M/2 N

74

Fibonacci numbers

 long Fib (int n) {

 if (n <= 1)

 return 1

 else

 return Fib(n-1) + Fib(n-2)

 }

T(n) = T(n-1) + T(n-2) +2

 T(n) = T(n-1) + T(n-2)  T(n) < (5/3)k = O((5/3)k)

 <Proof> By induction

 Base step : for n = 1, T(1) = 1 < (5/3)1

 Induction step : Suppose it holds for n ≤ k.

 Then, we want to show it holds for n = k+1

 (See page 6 of text.)

Fi +1 = Fi + Fi-1 , F0 = F1 = 1

