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Algorithm 

• Algorithm definition 

– A finite sequence of instructions to solve a 

specific problem 

– Each instruction should be finished within a finite 

amount of time 

– Amount of resources such as time or space for 

the execution 
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Algorithm 
 

• Algorithm description tools 

– English statements 

– Pseudo code 

– Programming language 
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Algorithm 
 

• Algorithm Design Technique 

– Divide-and-Conquer 

– Heuristics 

– Dynamic programming 

– Backtracking 

– Branch and bound 



1.  Problem specification 

2.  Understanding the problem 

3.  Thinking about how to solve it 

4.  Writing code with input data 

5.  Repeat run & revise 

 

Procedure of writing a program 
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• 고속 컴퓨터 

• 다수의 컴퓨터 

• 우수한 프로그램 

• 효과적인 자료저장, 추출방식 

 

     등이 확보 되도록 
 

실행시간을 짧게 하려면 
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• Running time (execution time) 

      seconds, minutes, hours,… 

 

• Space(memory) requirement 

      Kbytes, Mbytes, Gbytes,… 

Two (resource) issues 
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• Shorter estimated running time to solve the 
problem 

 

• Way to access data 

   O(N), O(log N) 

 

• Readability / easy debugging 

Better Programs 
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• Experiments 

 

• Theoretical-mathematical analysis by 
estimation / counting 

– Topic of this chapter. 

How to get running times? 
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Analysis of Algorithms! 

Algorithm Input Output 
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• Linear – N 

• Logarithmic – log N 

• Polynomial - 

• Exponential -  

• (in between) -   

Running times 
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Experimental Studies 

• Write a program 
implementing the 
algorithm 

• Run the program with 
inputs of varying size and 
composition 

• Use a method like 
system.currentTimeMillis() 
to get an accurate 
measure of the actual 
running time 

• Plot the results 
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• Have to implement the algorithm, which may 
be difficult 

• Results may not be indicative of the running 
time on the inputs which are not considered 
in the experiment.  

• For fair comparison of two algorithms, the 
same hardware and software environments 
should be used 

Limitations of Experiments 
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• Best-case exec. time:  minimum 

• Worst -case exec. time : maximum  

• Avg.-case exec. time : in the middle 

Input-dependent exec. time 
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• High-level description 
of an algorithm 

• More structured than 
English prose 

• Less detailed than 
actual program 

• Preferred notation for 
describing algorithms 

• Hides program design 
details 

Pseudo-code 
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Algorithm arrayMax(A, n) 

 Input array A of n integers 

 Output maximum element of A 

 currentMax  A[0] 

 

 for i  1 to n  1 do 

     if A[i]  currentMax then 

          currentMax  A[i] 

 return currentMax  

Ex: find max of an array 



Pseudo-code Details 

• Control flow 
– if … then … [else …] 

– while … do … 

– repeat … until … 

– for … do … 

– Indentation replaces braces 

  

• Method declaration 
     Algorithm method (arg [, arg…]) 

       Input … 

       Output … 
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Pseudo-code Details 

• Method call 
var.method (arg [, arg…]) 

 

• Return value 
return expression 

• Expressions 
   Assignment 

  (like  in Java) 

 

   Equality testing 
  (like  in Java) 

 

n2   Superscripts and other 
mathematical formatting 
allowed 
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• Changing the hardware/ software 
environment  
– affects T(n) by a constant factor, but 

– does not alter the growth rate of T(n) 

 

• The linear growth rate of the running time 
T(n) is an intrinsic property of algorithm 
arrayMax 

Growth Rate of Running Time 
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Growth Rates 

• Growth rates of functions: 
– Linear  n 

– Quadratic  n2 

– Cubic  n3 

 

• In a log-log chart, the slope of the line 
corresponds to the growth rate of the 
function 
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Growth Rates 
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• Focus on order of magnitude  

        
 

• Big Oh, Theta, Omega  

      

• Constant is not significant 

         1.5 N  ->  O(N) 

        120 N  ->  O(N) 

• Lower ordered terms are ignored 

        16 N3 + 6 N ->  O(N3) 

Notations 
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• Given functions f(n) and g(n), we say that 
f(n) is O(g(n)) if there are positive constants 
c and n0 such that 

             f(n)  c*g(n)  for n  n0 

 

    (Ex) 2n  10 is O(n) 

Proof:  2n  10  cn 

              (c  2) n  10 

              n  10/(c  2) 

     ∴  c  3 and n0  10 

 

Big-Oh Notation 
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• The big-Oh notation gives an upper bound on the 
growth rate of a function 

• The statement “f(n) is O(g(n))” means that the growth 
rate of f(n) is no more than the growth rate of g(n) 

• We can use the big-Oh notation to rank functions 
according to their growth rate 

Big-Oh and Growth Rate 
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f(n) is O(g(n)) g(n) is O(f(n)) 

g(n) grows more Yes No 

f(n) grows more No Yes 

Same growth Yes Yes 



• If is f(n) a polynomial of degree d, then f(n) 
is O(nd), i.e., 

  Drop lower-order terms 

  Drop constant factors 
 

• Use the smallest possible class of functions 
– Say “2n is O(n)” instead of “2n is O(n2)” 

 

• Use the simplest expression of the class 
– Say “3n  5 is O(n)” instead of “3n  5 is O(3n)” 

Big-Oh Rules 
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• The asymptotic analysis of an algorithm determines 
the running time in big-Oh notation 

• To perform the asymptotic analysis 
– We find the worst-case number of primitive operations 

executed as a function of the input size 

– We express this function with big-Oh notation 

• (Ex) 
– We determine that algorithm arrayMax executes at most 

7n  1 primitive operations 

– We say that algorithm arrayMax “runs in O(n) time” 

• Since constant factors and lower-order terms are 
eventually dropped anyhow, we can disregard them 
when counting primitive operations 

Asymptotic Algorithm Analysis 
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• Uses a high-level description of the 
algorithm instead of an implementation 
 

• Takes into account all possible inputs 
 

• Allows us to evaluate the speed of an 
algorithm independent of the 
hardware/software environment 

Theoretical Analysis-alternative 
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• Artificial machine with basic arithmetic 
operations such as +, -, *,  / 
 

• All with the same computing time – one unit 

(second?) 
 

• How real ? -> asymptotic(for big N) 

Computation Model 
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Primitive Operations 

• Basic computations 
performed by an 
algorithm 

• Identifiable in 
pseudocode 

• Largely independent 
from the programming 
language 

• Exact definition not 
important 

(Ex) 

• Evaluating an 
expression 

• Assigning a value 
to a variable 

• Indexing into an 
array 

• Calling a method 

• Returning from a 
method 
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Counting Primitive Operations 

• By inspecting the pseudocode, we can determine 
the max number of primitive operations executed by 
an algorithm, as a function of the input size 

Algorithm arrayMax(A, n)            # operations 
 currentMax  A[0]    1 

 for i  1 to n  1 do    n 

  if A[i]  currentMax then  (n  1) 

   currentMax  A[i]  (n  1)  

 return currentMax    1 

      Total  3n  
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int Sum (int N) { 

 int i, PartialSum; 

 

   PartialSum = 0; 

   for (i=1; i<= N; i++)  

        PartialSum += i * i * i; 

   return PartialSum; 

} 

  예제:  
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Prefix Averages (Quadratic) 

• The following algorithm computes prefix averages 
in quadratic time by applying the definition 

Algorithm prefixAverages1(X, n) 
 Input array X of n integers 
 Output array A of prefix averages of X  
    A  new array of n integers  
 for i  0 to n  1 do 

  s  X[0]  
  for j  1 to i do  

           s  s + X[j] 
  A[i]  s / (i + 1)  
 return A             

 #operations 

  n 

  n 

  n 
1 + 2 + …+ (n  1) 
1 + 2 + …+ (n  1) 
  n      

  1 



Simple Algorithms 

- Finding a maximum(or min.) 

 

- Sort 

 

- Binary Search 

 

O(N)Τ(Ν)    

)NO(NΤ(Ν) log   

N)O(Τ(Ν) log   



• Algorithm - very fundamental, very important!  

    listed  in Figure 2.9 on page 30 

 

• Running time  

Binary Search 
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Algorithm 

• Algorithm efficiency in terms of  

– Time complexity 

– Space complexity 

• Issues 

– How to estimate the time required for a program 

– How to reduce the running time of a program 

– The results of careless use of recursion 
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Time complexity 

• Algorithm used  

• Input size 

• T(n) : function on input size n 

– Tavg(N): Average running time 

– Tworst(N): Worst running time 
 

• Tavg(N) often reflects typical behavior 

• Tworst(N) represents a guarantee for performance on any 

possible input 
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Definitions 

• Establish  a relative order among functions 

• We compare relative rates of growth 
 

1. T(N) = O (f (N)) if there are positive constants c and n0 
such that T(N)  c* f(N) when N ≥ n0  (Big-Oh) 

– The growth rate of T(N) is less than or equal to that 
of f(N) 
 
 

2. T(n) = Ω (g(N)) if there are positive constants c and n0 
such that T(N) ≥ c*g(N) when N ≥ n0 (Omega) 

– The growth rate of T(N) is greater than or equal to 
that of g(N) 

 



39 

Meaning 

3. T(N) = Θ (h(N)) if and only if T(n) = O (h(N)) and T(n) = 
Ω(h(N)) (Theta) 

– The growth rate of T(N) equals the growth rate of 
h(N) 
 
 

4. T(N) = o (p (N)) if T(n) = O (p(N)) and T(n) ≠ Θ (p(N)) 
(Little-oh) 

– The growth rate of T(N) is less than the growth rate 
of p(N). 
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Algorithm analysis 

• Definition 1 : 

   T(n) = O(f(n)) if there are positive constants c and n0   

                such that  T(n) ≤ c * f(n)  for n ≥ n0 

Says that eventually there is some point n past which  
c * f(n)  is always at least as large as T(n), so that if 
constant factors are ignored, f(n)  is at least as big asT(n). 

Ex 1: T(n) = (n+1)2 = O(n2)      

Ex 2: T(n) = 3n3 + 2n2 = O(n3) 
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Algorithm analysis 

 <proof>   

   Show T(n) = (n+1)2 ≤ c*n2  for some c and n ≥ n0 

              For c =4,   (n+1)2 ≤ 4n2  

                               3n2 - 2n –1 ≥ 0  

                               n ≥ 1    n0 = 1 
 

       T(n) = (n+1)2 ≤ 4n2  for c =4, n ≥ 1  

 

Ex 1: T(n) = (n+1)2 = O(n2)      
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Algorithm analysis 

 <proof>   

  Show T(n) = 3n3 + 2n2 ≤cn3 for some c and n ≥ n0 

            For c =4,   3n3 + 2n2 ≤4n3  

                           n3 - 2n2 ≥ 0  

                           n ≥ 2         n0 = 2 
 

           T(n) = 3n3 + 2n2 ≤ 4n3 for c =4, n ≥ 2  

 

 

Ex 2:  T(n) = 3n3 + 2n2 = O(n3) 
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Algorithm analysis 

• Definition 2 : 

T(n) =  Ω (f(n)) if there are positive constants c and n0   

           such that  T(n) ≥ c * f(n)  for n ≥ n0 

 Ex 4:  T(n) = n3 + 2n2 = Ω(n3) 

 <Proof> 

   Show T(n) = n3 + 2n2  ≥ cn3  for c, n ≥ n0 

           For c =1,  n3 + 2n2 ≥ n3 

                                  2n2 ≥ 0          n ≥ 1   

        T(n) = n3 + 2n2 ≥ n3  for c=1, n ≥ 1 
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Algorithm analysis 

• Definition 3 : 

    T(n) is Θ(f(n)) if T(n) = O(f(n)) and T(n) =  Ω(f(n))  

 

• Definition 4 :  

    T(n) is  o(f(n)) if T(n) = O(f(n)) and T(n) ≠ Θ(f(n)) 
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Algorithm analysis 

• Time complexity comparison 

– Relative growth rate for large n 

– L’Hospital’s rule: lim n ∞ f(n) / g(n)  

    0  : f(n) < g(n) for large n    f(n) = O(g(n)), o(g(n)) 

     c  : f(n) = c*g(n) for large n    f(n) = θ (g(n)) 

     ∞  : f(n) > g(n)  for large n   f(n) = Ω(g(n)), g(n)=o(f(n))  

     oscillate : no relation 

 

 Ex)  2n > n3 > n2logn > n2 > nlogn > n > log3n > logn > c 
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Algorithm analysis 

• Constant factor 

– O(n2 )   vs  O(1000n)               

1000 

n ≤ 1000   O(n2 )  

n > 1000    O(1000n) 

 

For n  ∞, O(n2 ) > O(n) 

n 

1000n 
n2 



Growth rates of typical functions 



Maximum subsequence sum algorithms 

• Given (possibly negative) integers A1,A2,…,AN, find the 
maximum value of ∑j

k=i
  Ak. (For convenience, the 

maximum subsequence sum is 0 if all the integers are 
negative.) 

 

    (Ex)  -2,  11,  -4,  13,  -5,  -2 

 

        The answer is         20 (subsequence 11, -4, 13) 



Maximum subsequence sum algorithm 1 



Maximum subsequence sum algorithm 2 



Maximum subsequence sum algorithm 3 



Maximum subsequence sum algorithm 3 



Maximum subsequence sum algorithms 4 



Maximum subsequence sum algorithms 



Maximum subsequence sum algorithms 



Maximum subsequence sum algorithms 
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Algorithm analysis 

Property 1:  If  T1(n) = O(f(n)) and T2(n) = O(g(n)),   

               T1(n) + T2(n) = O(max(f(n), g(n)) 

 <proof>  By definition,  

      T1(n) ≤c1f(n) for c1,  n>n1 

      T2(n) ≤c2f(n) for c2,  n>n2 

 

      T1(n) + T2(n)  

           ≤ c1f(n) + c2f(n)  

           ≤ c1 max(f(n), g(n)) + c2 max(f(n), g(n)) for n ≥ max(n1,n2 )    

           ≤ ( c1 + c2) max(f(n), g(n)) for n ≥ max(n1,n2 )  
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Algorithm analysis 

 

     Ex 7: T(n) = T1(n) + T2(n) + T3(n) = O(n2) + O(n3) + O(nlogn) 

                T(n) =  

 

      Ex 8:   T1(n) = n4 if n is even, n2 if n is odd 

                T2(n) = n2 if n is even, n3 if n is odd 

                    if n is even   T(n) = 

                    if n is odd    T(n) =  
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Algorithm analysis 

• Property 2: If T(n) = O(f(n)+g(n)) such that g(n)≤f(n) for all n ≥ n0  

                                 T(n) = O(f(n)) 

              Ex) T(n) = O(n2 + n3 + logn) 
 

• Property 3: If  T1(n) = O(f(n)) and T2(n) = O(g(n)),  

                         T(n) = T1(n)*T2(n) = O(f(n)*g(n))  
 

• Property 4: T(n) = O(c*f(n)) = O(f(n)) 

       

         Ex)  O(4/3n3 + 1/2n2 + 2) =  
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Model of Computation 

Program 

Simple instruction 
  - add, multiply, comparison 

  - assignment statement 

  - conditional statement 

Loop 
   - for statement 

   - while statement 

   - repeat  statement 

O(1) 

# of iteration * time for body 

Procedure Call 
   - non-recursive  

   - recursive  
 Recursive function 
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Bubble sort 

 void Bubble (var A[1..n]) { 

       int  i, j, temp; 

       for (i=1; i ≤n-1; i++) 

            for (j=n; j  ≥  i+1; j--)  

                 if A[j-1] > A[j] { 

                      temp = A[j-1]; 

                      A[j-1] = A[j]; 

                      A[j] = temp 

                 } 

 } 

4 

2 

3 

1 

1 

4 

2 

3 

1 

2 

4 

3 

1 

2 

3 

4 

i =1 i =2 i =3 

           n-1 

T(n) = ∑ (n-i) * 1 = (n-1) + (n-2) +…+ 1 = n(n-1)/2 = O(n2)  

           i=1 
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Function Call 

• Non-recursive Call 

 Recursive Call 

T(n) = f(T(k)) for various value of k 

1 

6 

2 3 

5 4 

main 
func1 func2 func3 

call func1 call func2 call func3 
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Factorial 

  int fact ( int n) { 

      if n <=1 

           return 1 

      else 

           return n*fact(n-1) 

} 

T(n) = T(n-1)  + c  if n > 1 

         =  d                if n = 1 
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Factorial 

  T(n) = T(n-1)  + c  if n > 1 

          =  d                 if n = 1 

  T(n) = T(n-1) + c 

          = [T(n-2)+c]+c = T(n-2) + 2c 

          = [T(n-3)+c]+2c= T(n-3) +3c 

           …..    

          = T(1) +(n-1)c 

          = d + (n-1) c 

          = O(n) 
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Mergesort 

   
L1 

   
L2 

L1 

 L2 

sort 

sort 
L 

5 
6 
1 
2 

sort 

sort 4 
3 
8 
9 

1 
2 
5 
6 

3 
4 
8 
9 

1 
2 
3 
4 
5 
6 
8 
9 

merge 

merge 
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Example 

5 2 4 6 1 3 2 6 

2     5 4     6 1     3 2     6 

2     4     5     6 1     2     3     6 

1    2    2    3    4    5    6    6 

merge merge merge merge 

merge merge 

merge 

Initial sequence 

Sorted sequence 
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Merge-sort 

  void Merge-sort( L, n) { 

      if n <=1 

           return L 

      else { 

           Merge-sort (L1, n/2); 

           Merge-sort (L2, n/2); 

           return merge (L1, L2, n/2); 

  } 

T(n) = 2T(n/2)  + c1n   if n > 1 

         =  c2                     if n = 1 
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Merge-sort 

T(n) = 2T(n/2) + c1n  

        = 2[2T(n/ 22) + c1n/2]+ c1n = 22 T(n/ 22)+ 2c1n 

        = 22[2T(n/ 23) + c1n/ 22]+ 2c1n = 23 T(n/ 23)+ 3c1n 

        … 

        = 2r T(n/2r)+ r c1n   n/2r = 1,  n = 2r ,  r = logn  

        = n c2+ c1nlogn  

        = O(nlogn) 

T(n) = 2T(n/2)  + c1n  if n > 1 

        =  c2                     if n = 1 
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Binary Search 

   

int binary-search (A, low, high, x) { 

     mid = (low+high)/2; 

     if (A[mid]=x) then  

            return mid 

     else if (A[mid]>x) then  

            binary-search(A,low,mid-1,x) 

     else binary-search(A,mid+1,high,x) 

     } 

T(n) = T(n/2)  + 1  if n > 1 

        =  1                 if n = 1 

1     2      3      5     8     9      10     11     13     15     16     18    21    24    26   30 

1 2 3 4 

  Search x(=16) from a sorted list A 
16 8 1 
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Binary Search 

T(n) = T(n/2)  + 1  if n > 1 

        =  1                 if n = 1 

  T(n) = T(n/2) + 1    

          = [T(n/ 22) + 1] + 1 =  T(n/ 22) +  2 

          = [T(n/ 23) + 1] + 1 =  T(n/ 23) + 3 

          … 

          = T(n/ 2r) + r    n/2r = 1,  n = 2r ,  r = logn  

          = T(1) + logn  = 1 + logn 

          = O(logn) 
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GCD(Greatest Common divisor) 

   
  int GCD (M, N) { 

        while (N!=0){   

               rem = M % N; 

               M   = N; 

               N   = rem; 

         } 

         return M 

  } 

     M                N                rem 

 
     36          15             6 
 
     15           6              3 
 
       6           3              0 
 
       3           0                   



73 

GCD(Greatest Common Divisor) 

(Theorem 2.1) If M >N,  M mod N < M/2 

<Proof>   

   Case 1 :  N ≤ M/2            

                  M mod N < M/2 

   Case 2 : N > M/2 

                 M mod N ≤ M-N < M/2 

 T(n)  = T(n/2)  + 1  if n > 1 

  =  1                 if n = 1 

  =  O(logn) 

M 

M/2 N 

M 

M/2 N 
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Fibonacci numbers 

   long Fib (int n) { 

        if (n <= 1) 

              return 1 

        else 

              return Fib(n-1) + Fib(n-2) 

   } 

T(n) = T(n-1) + T(n-2) +2 

  T(n) = T(n-1) + T(n-2)   T(n) < (5/3)k = O((5/3)k ) 

   <Proof> By induction 

      Base step :   for n = 1, T(1) = 1 < (5/3)1 

      Induction step : Suppose it holds for n ≤ k.  

                                  Then, we want to show it holds for n = k+1   

                                  (See page 6 of text. ) 

Fi +1 =  Fi + Fi-1  ,  F0 = F1 = 1 


