
Computer Architecture

Pipeline

Lynn Choi

Korea University

Motivation

Non-pipelined design

Single-cycle implementation

The cycle time depends on the slowest instruction

Every instruction takes the same amount of time

Multi-cycle implementation

Divide the execution of an instruction into multiple steps

Each instruction may take variable number of steps (clock cycles)

Pipelined design

Divide the execution of an instruction into multiple steps (stages)

Overlap the execution of different instructions in different stages

Each cycle different instructions are executed in different stages

For example, 5-stage pipeline (Fetch-Decode-Read-Execute-Write),

5 instructions are executed concurrently in 5 different pipeline stages

Complete the execution of one instruction every cycle (instead of

every 5 cycle)

Can increase the throughput of the machine by 5 times

Pipeline Example

LD R1 <- A

ADD R5, R3, R4

LD R2 <- B

SUB R8, R6, R7

ST C <- R5

F D R E W

F D R E W

F D R E W

F D R E W

F D R E W

F D R E W

F D R E W

F D R E W

F D R E W

F

Non-pipelined processor: 25 cycles = number of instrs (5) * number of stages (5)

Pipelined processor: 9 cycles = start-up latency (4) + number of instrs (5)

Filling the

pipeline

Draining the

pipeline

5 stage pipeline:

Fetch – Decode – Read – Execute - Write

Data Dependence & Hazards

Data Dependence

Read-After-Write (RAW) dependence

True dependence

Must consume data after the producer produces the data

Write-After-Write (WAW) dependence

Output dependence

The result of a later instruction can be overwritten by an earlier instruction

Write-After-Read (WAR) dependence

Anti dependence

Must not overwrite the value before its consumer

Notes

WAW & WAR are called false dependences, which happen due to storage
conflicts

All three types of dependences can happen for both registers and memory
locations

Characteristics of programs (not machines)

Must be preserved during execution to produce the correct output

Example 1

1 LD R1 <- A

2 LD R2 <- B

3 MULT R3, R1, R2

4 ADD R4, R3, R2

5 SUB R3, R3, R4

6 ST A <- R3

F D R E W

F D R E W

F D R R R

F D D D R

D R F D D

RAW dependence:

1->3, 2-> 3, 2->4, 3 -> 4, 3 -> 5, 4-> 5, 5-> 6

WAW dependence:

3-> 5

WAR dependence:

4 -> 5, 1 -> 6 (memory location A)

E W

R R R E W

R R E W

Pipeline bubbles due to RAW dependences (Data Hazards)

Execution Time: 18 cycles = start-up latency (4) + number of instrs (6)

 + number of pipeline bubbles (8)

F D F F D D R R R E W

F F

Example 2

1 LD R1 <- A

2 LD R2 <- B

3 MULT R3, R1, R2

4 ADD R4, R5, R6

5 SUB R3, R1, R4

6 ST A <- R3

F D R E W

F D R E W

F D R R R

F D D D R

R R F D R

Changes:

1. Assume that MULT execution takes

 6 cycles Instead of 1 cycle

2. Assume that we have separate ALUs

 for MULT and ADD/SUB

E E

R E W

R R W

due to WAW

Execution Time: 18 cycles = start-up latency (4) + number of instrs (6)

 + number of pipeline bubbles (8)

D D F D D D R R E W

E E E

E

R

Multi-cycle execution like MULT can cause out-of-order completion

Dead

Code

E W
Out-of-order (OOO)

Completion

due to RAW

F F

Pipeline stalls

Need reg-id comparators for

RAW dependences

Reg-id comparators between the sources of a consumer instruction in REG

stage and the destinations of producer instructions in EXE, WRB stages

WAW dependences

Reg-id comparators between the destination of an instruction in REG stage

and the destinations of instructions in EXE stage (if the instruction in EXE

stage takes more execution cycles than the instruction in REG)

WAR dependences

Can never cause the pipeline to stall since register read of an instruction

always happens earlier than the write of a following instruction

If there is a match, recycle dependent instructions

The current instruction in REG stage need to be recycled and all the

instructions in FET and DEC stage need to be recycled as well

Also, called pipeline interlock

Data Bypass (Forwarding)

Motivation

Minimize the pipeline stalls due to data dependence (RAW) hazards

Idea

Let’s propagate the result as soon as the result is available from ALU or

from memory (in parallel with register write)

Requires

Data path from ALU output to the input of execution units (input of integer

ALU, address or data input of memory pipeline, etc.)

Register Read stage can read data from register file or from the output of the

previous execution stage

Require MUX in front of the input of execution stage

Datapath w/ Forwarding

Elsevier Inc. All rights reserved

Example 1 with Bypass

1 LD R1 <- A

2 LD R2 <- B

3 MULT R3, R1, R2

4 ADD R4, R3, R2

5 SUB R3, R3, R4

6 ST A <- R3

F D R E W

F D R E W

F D R E W

F D R E W

Execution Time: 10 cycles = start-up latency (4) + number of instrs (6)

 + number of pipeline bubbles (0)

F D R E W

F D R E W

Example 2 with Bypass

1 LD R1 <- A

2 LD R2 <- B

3 MULT R3, R1, R2

4 ADD R4, R5, R6

5 SUB R3, R1, R4

6 ST A <- R3

F D R E W

F D R E W

F D R E E

F D R E W

R R R R R

E E

E

D D D D R E

E

F D

F D

Pipeline bubbles

due to WAW E W

W

W

Pipeline Hazards

Data Hazards
Caused by data (RAW, WAW, WAR) dependences

Require

Pipeline interlock (stall) mechanism to detect dependences and generate
machine stall cycles

Reg-id comparators between instructions in REG stage and
instructions in EXE/WRB stages

Stalls due to RAW hazards can be reduced by bypass network

Reg-id comparators + data bypass paths + mux

Structural Hazards
Caused by resource constraints

Require pipeline stall mechanism to detect structural constraints

Control (Branch) Hazards
Caused by branches

Instruction fetch of a next instruction has to wait until the target (including
the branch condition) of the current branch instruction is resolved

Use

Predict the next target address (branch prediction) and if wrong, flush all the
speculatively fetched instructions from the pipeline

Structural Hazard Example

1 LD R1 <- A

2 LD R2 <- B

3 MULT R3, R1, R2

4 ADD R4, R5, R6

5 SUB R3, R1, R4

6 ST A <- R3

Assume that

1. We have 1 memory unit and 1 integer ALU unit

2. LD takes 2 cycles and MULT takes 4 cycles

F D R E E

F D R R E

F D D R R

F F D D R

F F D D

F F F

W

E W

E E E E W

R R R E W

D D R E W

F D R E W Structural

Hazards
RAW

Structural Hazards

Structural Hazard Example

1 LD R1 <- A

2 LD R2 <- B

3 MULT R3, R1, R2

4 ADD R4, R5, R6

5 SUB R3, R1, R4

6 OR R10 <- R3, R1

Assume that

1. We have 1 memory pipelined unit and

 and 1 integer add unit and 1 integer multiply unit

2. LD takes 2 cycles and MULT takes 4 cycles

F D R E E

F D R E E

F D R R E

F D D R E

F D R

D

W

W

E E E W

RAW
Structural Hazards due to write port

F

F

W

R E E

E W

W

Control Hazard Example (Stall)

1 LD R1 <- A

2 LD R2 <- B

3 MULT R3, R1, R2

4 BEQ R1, R2, TARGET

5 SUB R3, R1, R4

6 ST A <- R3

7 TARGET:

RAW
Control Hazards

F D R E E

F D R E E

F D R R E

F D D R E

F F F

W

W

E E E W

F

W

F

F D R E W

D R E W

Branch Target is known

Control Hazard Example (Flush)

1 LD R1 <- A

2 LD R2 <- B

3 MULT R3, R1, R2

4 BEQ R1, R2, TARGET

5 SUB R3, R1, R4

6 ST A <- R3

7 TARGET: ADD R4, R1, R2

F D R E E

F D R E E

F D R R E

F D D R E

F D R

W

W

E E E W

F

W

F

E W

D R E W

Branch Target is known

F D R E W

F D R E W

Speculative execution:

These instructions will be flushed

on branch misprediction

Branch Prediction

Branch Prediction
Predict branch condition & branch target

Predictions are made even before the branch is fetched and decoded

Prefetch from the branch target before the branch is resolved (Speculative
Execution)

A simple solution: PC <- PC + 4, prefetch the next sequential instruction

Branch condition (Path) prediction
Only for conditional branches

Branch Predictor

Static prediction – at compile time

Dynamic prediction – at runtime using execution history

Branch target prediction
Branch Target Buffer (BTB) or Target Address Cache (TAC)

Store target address for each branch and accessed with current PC

Do not store fall-through address since it is PC +4 for most branches

Can be combined with branch condition prediction, but separate branch
prediction table is more accurate and common in recent processors

Return stack buffer (RSB)

Store return address (fall-through address) for procedure calls

Push return address on a call and pop the stack on a return

Branch Target Buffer

Branch Instruction

Address

Branch Target

Address

Branch Condition

Prediction (bimodal)
.

.

.

.

.

.

.

.

.

 For BTB to make a correct prediction, we need

 BTB hit: the branch instruction should be in the BTB

 Prediction hit: the prediction should be correct

 Target match: the target address must not be changed from last time

 For direct branches, the target address is never changed

 Example: BTB hit ratio of 96%, 97% prediction hit, 1.2% of target change,

The overall prediction accuracy = 0.96 * 0.97 *0.988 = 92%

 Implementation: Accessed with VA and need to be flushed on context switch

Branch Prediction

Static prediction

Assume all branches are taken : 60% of conditional branches are taken

Backward Taken and Forward Not-taken scheme: 69% hit rate

Profiling

Measure the tendencies of the branches and preset a prediction bit in the opcode

Sample data sets may have different branch tendencies than the actual data sets

92.5% hit rate

Used as safety nets when the dynamic prediction structures need to be

warmed up

Dynamic schemes- use runtime execution history

LT (last-time) prediction - 1 bit, 89%

Bimodal predictors - 2 bit

2-bit saturating up-down counters (Jim Smith), 93%

Two-level adaptive training (Yeh & Patt), 97%

First level, branch history register (BHR)

Second level, pattern history table (PHT)

Bimodal Predictor

S(I): State at time I

G(S(I)) -> T/F: Prediction decision function

E(S(I), T/N) -> S(I+1): State transition function

Performance: A2 (usually best), A3, A4 followed by A1 followed by LT

IEEE All rights reserved

Superscalar Processors

Exploit instruction level parallelism (ILP)

Fetch, decode, and execute multiple instructions per cycle

Today’s microprocessors issue 2 ~ 6 instructions per cycle

In-order pipeline versus Out-of-order pipeline

In-order pipeline

When there is a data hazard stall, all the instructions following the stalled

instruction must be stalled as well

Out-of-order pipeline (dynamic scheduling)

After the instruction fetch and decode phases, instructions are put into buffers

called instruction windows. Instructions in the windows can be executed out-of-

order when their operands are available

Examples

Pentium IV: 3-way OOO

MIPS R10000: 4-way OOO

Ultrasparc II V9: 4-way in-order

Alpha 21264: 4-way OOO

Superscalar Example

Assume 2-way superscalar processor with the following pipeline:

 1 ADD/SUB ALU pipeline (1-Cycle INT-OP)

 1 MULT/DIV ALU pipelines (4-Cycle INT-OP such as MULT)

 2 MEM pipelines (1-Cycle (L1 hit) and 4-Cycle (L1 miss) MEM OP)

Show the pipeline diagram for the following codes assuming the bypass network:

LD R1 <- A (L1 hit); LD R2 <- B (L1 miss)

MULT R3, R1, R2; ADD R4, R1, R2

SUB R5, R3, R4; ADD R4, R4, 1

ST C <- R5; ST D <- R4

F D R E W

F D R L1 L2 L2 L2 W

F D R R R R

F D R E W

F D R R R

F D W

F D D

F F D D

E

E1 E2

R R R

D D D

D

F

D D R

F F D D

F F D D

E3 E4 W

R E W

R E W

R E W

Exercises and Discussion

WAR dependence violation cannot happen in in-

order pipeline. Prove why?

What is pipeline interlock? Explain the difference

between pipeline interlock HW and data bypass

HW.

How do execution pipelines such as FPU pipeline

affect the processor performance?

Homework 5

Read Chapter 5

Exercise

4.2

4.6

4.11

4.14

4.16

4.21

4.24

