
Microprocessor Microarchitecture

Interrupt and Precise Exception

Lynn Choi

Dept. Of Computer and Electronics Engineering

Interrupts

 Interrupts

 Forced transfer of control to a procedure (handler) due to external events

(interrupts) or due to an erroneous condition (exceptions)

 Exception

 Generated by the currently running process due to an erroneous condition

 Synchronous, internal

 Interrupt

 Asynchronous, external events

 Interrupt handling mechanism

 Allows interrupts/exceptions to be handled transparently to the executing

process (application programs and operating system)

 Procedure

 When an interrupt is received or an exception condition detection, the current

task is suspended and transfer automatically goes to a handler

 After the handler is complete, the interrupted task resumes without loss of

continuity, unless recovery is not possible or the interrupt causes the currently

running task to be terminated.

Exceptions

 Exception Classification (processor-generated)

 Fault

 Return to the faulting instruction

 Reported during the execution of the faulting instruction

 Virtual memory faults

 TLB miss, page fault, protection

 Illegal operations

 divide by zero, invalid opcode, misaligned reference

 Trap

 Return to the next instruction (after the trapping instruction)

 For a JMP instruction, the next instruction should point to the target of the

JMP instruction

 Reported immediately following the execution of the trapping instruction

 Examples: breakpoint, debug

Exceptions

 Abort

 Suspend the process at an unpredictable location

 Does not report the precise location of the instruction causing the exception

 Does not allow restart of the program

 Severe errors or malfunctions

 Abort handlers are designed to collect diagnostic information about the

processor’s state and then perform a graceful system shutdown

 Examples: bit error (parity error), inconsistent or illegal values in system tables

 Software-generated exception

 INT n instruction generates an exception with an exception number (n) as an

operand

Precise Exception

 All exceptions except aborts must report the exception on a

precise instruction boundary

 Precise exception model

 All integer/FP exceptions are reported on the faulting instruction

 All previous instructions are completed before the interruption point

 All subsequent operations are nullified

 After handling the exception, the execution resumes at the faulting instruction

(fault) or at the next instruction (trap)

 For O-O-O processors,

 Interrupts are taken at the retirement phase of instruction execution; so they are

always taken in-order.

Exception Handling

 Exception (interrupt) vector

 Each exception or an interrupt is associated with an identification number,

vector

 Exception procedure

 Flush all the instructions fetched subsequent to the instruction causing the

exception condition from the pipeline

 Drain the pipeline: complete all previous instructions

 Complete all outstanding write operations prior to the faulting instruction

 Save the PC of the next instruction to execute

 Also need to save the necessary registers and stack pointers to allow it to

restore itself to its state

 Vector the interrupt

 Fetch instruction from the ISR and service the interrupt

 Return from the interrupt

(External) Interrupt

 Interrupt

 Asynchronous

 Caused by external events, IO devices

 Return to the next instruction for a restart

 Interrupt Classification

 Maskable interrupt

 Can be disabled/enabled by an instruction

 Generated by asserting INTR pin or sending interrupt messages over the APIC

(Advanced Programmable Interrupt Controller) bus

 External interrupt controllers

 Intel 8259 PIC (programmable interrupt controller) delivers the interrupt

vectors on the system bus during interrupt acknowledge cycle

Interrupt

 Non-maskable interrupt (NMI)

 Cannot be disabled by program

 Received on the processor’s NMI# input pin

 Software interrupt

 Generated by INT n instruction

 INT instruction can be used to generate an interrupt or an exception by using

a vector number as an operand

 Viewed as an implicit call to interrupt handler of interrupt vector n

 No mechanism for masking interrupts

Interrupt Priority

 Predefined order of different interrupts

 H/W Reset, Machine Check Abort

 External HW interventions

 INIT - like H/W reset without flushing caches)

 SMI (System (e.g. power) Management Interrupt)

 Traps on the previous instruction

 External Interrupts - NMI, MI

 Faults on executing an instruction

 DTLB faults

 FP exception, overflow, alignment

 Faults from fetching/decoding an instruction

 ITLB faults: page miss, access/protection violation

 Illegal opcode

 Lower priority exceptions are regenerated after returning from the higher priority

interrupt handler

Interrupt Priority

Parallel (Centralized) Arbitration (can use Priority Encoder)

Serial Arbitration (Daisy Chaining, M0 has the highest priority)

Polling
(by S/W)

BR BG

M

BR BG

M

BR BG

M

M0
BGi BGo

BR
M1

BGi BGo

BR
M2

BGi BGo

BR

BG

BR

A.U.

BR A

M

BR A

M

BR A

M

BR
A

A.U.

Bus Request

Bus Grant

From UCB Patterson

Precise Interrupt

 Definition: precise interrupt

 An interrupt is precise if the saved processor state corresponds to a

sequential model of program execution before the interrupt occurs

 Precise exception model

 All previous instructions are completed before the interruption point

 All subsequent operations are nullified

 After handling the exception, the execution resumes at the faulting instruction

(fault) or at the next instruction (trap)

 Precise interrupt is difficult to implement for

 Pipelined processors

 Because exceptions can be generated out of order in different pipeline stages

 For both in-order and OOO processors

 Out-of-order processors

 Because instructions may complete before an instruction issued earlier raises an

exception

Precise Interrupt

 Precise interrupts are necessary to restart program execution

after the unexpected event

 I/O and timer interrupts

 virtual memory related interrupts, i.e. page faults, TLB miss, etc.

 software debugging

 graceful recovery from arithmetic exceptions, I.e. underflow, overflow

Solutions for Precise Exceptions

 In-order pipelines

 All instructions pass through pipeline in program order and exception

conditions are reported in program order at the end of pipeline before the

processor state is modified

 Instructions modify the processor state only when all previously issued

instructions are known to be free of exceptions

 Out-of-order pipelines

 Early O-O-O machines such as CDC6600 and IBM 360/91 did not support

precise exceptions in favor of maximum parallelism

 Some machines such as early MIPS processor are restartable but did not

support full precise interrupts. This requires implementation-dependent

software shift through the machine dependent state and restore the pipeline

state.

Exception Recovery & Restart

 Motivation -

 Precise interrupts on exception

 provide in-order state to the exception handler

 Exception recovery

 Cancel the effects of instructions that should have not been issued

 Need to buffer states to restore the unspeculated states

 Some exceptions are easy to handle since the exception conditions are

detected prior to execution

 Privilege interrupts, ITLB miss, etc.

 Therefore, these exceptions should not report the exceptions until the end of

pipeline

 Exception conditions may be detected out-of-order!

 But exceptions must be reported in program order

HW Schemes

 Checkpoint repair - Hwu & Patt

 Reorder buffer - Smith & Pleszkun

 Instructions complete out-of-order but commit in order

 Variations of Reorder buffer

 History buffer - Smith & Pleszkun

 Reorder buffer with Future file - Smith & Pleszkun

Buffering States

 In-order state

 The most recent assignments performed by the longest continuous sequence

of completed instructions

 Redundant assignments are superseded

 Necessary for in-order completion

 Lookahead state

 The first uncompleted instruction to the end of the instruction sequence

including all pending assignments

 No value is superseded

 Architectural state

 The most recently completed and pending assignments to each register

 State used by a following instruction

 Can be obtained by combining in-order & lookahead states

HW Schemes

 Checkpoint repair

 current logical space - architectural state

 backup space - in-order state

 Reorder buffer

 Register file - in-order state

 Reorder buffer - lookahead state

 History buffer

 Register file - architectural state

 History buffer - in-order state

 Reorder buffer with Future file

 Register file - in-order state

 Reorder buffer - lookahead state

 Future file - architectural state

Reorder Buffer - Smith & Pleszkun

 Maintain two states
 Register file contains the in-order state

 Reorder buffer contains the lookahead state

 The architectural state is obtained by combining in-order and lookahead states.

 Multiple assignments can exist for a single register

 Managed as FIFO queue
 When an instruction is decoded, an entry is allocated on the top of the reorder

buffer. After the instruction completes, the result is written to the entry.

 Instruction decoding stalls if there is no reorder buffer entry

 When the value reaches the bottom, it is written into the register file if there is no
exception. If the instruction is not complete, the reorder buffer does not advance
until the instruction completes.

 If there is an exception, the reorder buffer contents are discarded and then
reverts to the in-order state in the register file.

 Each entry contains its PC to provide PC on exception

 On an exception

 Locate an exception point in the reorder buffer to know which entries to reset

 On a branch
 Allocate a reorder buffer entry for each branch, even though the branch does not

produce result

 On a branch misprediction
 Should not discard the entire reorder buffer; some of the lookahead states are for

instructions preceding the branch.

Reorder buffer

IEEE All rights reserved

Reorder Buffer

 Disadvantages
 Require associative lookup to combine in-order and lookahead states

 It is possible for more than one entry in the reorder buffer to correspond to
source register

 Only the latest reorder buffer entry need to be bypassed

 Can be solved by an additional buffer called future file

 The instruction dispatch logic does not know the original instruction order,
and so the dispatch logic cannot prioritize instructions for issue based on this
order.

 Advantages
 No need to keep instructions ordered in the central window

 The window need not be compressed as instructions are issued. Instead, new
instructions from the decoder are simply placed into the freed locations.

 Reorder buffer used in
 HP PA-8000

 DEC Alpha 21264

 Intel P-Pro and Pentium II, III

 MIPS R10000

 Power PC620

Exercises and Discussion

 Compare the following: TLB miss, PTE miss, page miss

 Assume that you have a Pentium 4 processor, which has

a 3-way superscalar 20-stage OOO pipeline. At a

particular cycle, there are 1 exception (iTLB miss), 1

external interrupt from DMA, and 1 branch

misprediction at the same time. How does the Pentium 4

handle these 3 events properly?

