
Microprocessor Microarchitecture

Dependency and OOO Execution

Lynn Choi

Dept. Of Computer and Electronics Engineering

Three Forms of Dependence

 True dependence (Read-After-Write)

 Also called flow dependence

 Require pipeline interlock

 Data bypass (forwarding) can reduce the producer latency

 Make values generated by FUs immediately available

 Output dependence (Write-After-Write)

 Anti dependence (Write-After-Read)

 Both of them are called false dependencies

 Require pipeline interlock or register renaming

In-Order Pipeline

 In-order issue

 If an instruction is stalled in the pipeline, following instructions cannot proceed.

However, once issued to FUs, in general the instruction need not be stalled.

 Instruction can complete out-of-order

 Dependency resolution mechanism

 Pipeline interlock

 Need reg-id comparators between sources and destinations of instructions in

REG stage and the destinations of instructions in the EXE and WRB stages

 Comparators needed for both interlock and bypass

 Scoreboard

 A busy bit for each register

 For long latency operations such as MEM operations

 Instead of comparators, you need to check scoreboard for operand availability

 Comparators are still needed for bypass!

Example

 FET-DEC-REG-EXE-WRB

 What kind of dependence violations are possible?

 Single-issue 5-stage in-order pipeline with the following pipelined FUs

 2 INT unit (1 cycle INT operation)

 1 FP unit (4 cycle FP operation)

 2 MEM pipelines (2 cycle MEM operation)

 How many comparators do you need for the previous example?

 RAW

 2 srcs * 2 stages (E, W) * 2 INT = 8

 2 srcs * 5 stages (E1, E2, E3, E4, W) * 1 FP = 10

 2 srcs * 3 stages (E1, E2, W) * 2 MEM = 12

 WAW

 1 dest * 3 stages (E1, E2, E3) * 1 FP = 3

 1 dest * 1 stages (E1) * 2 MEM = 2

 WAW hazard can happen only for MEM and FP pipelines.

Out-Of-Order Machines

 Anti-dependence can happen in OOO machines

 DIV F0, F2, F4

 ADD F10, F0, F8

 SUB F8, F8, F14

 Different approaches

 Scoreboarding

 Tomasulo’s Algorithm

 Register Update Unit

Scoreboarding - CDC6600 -

 Scoreboard
 One bit per register indicates whether or not there is a pending update

 Pipeline stalls on WAW and WAR dependences

 FET-DEC/ISS-REG-EXE-WRB
 DEC/ISSUE stage: check for WAW and structural hazards

 (Centralized) instruction window between ISS and REG stages

 Pipeline stalls on output dependence by checking scoreboard

 Allows only 1 pending update

 Pipeline also stalls if there is no empty entry in the instruction window

 REG stage

 Resolve RAW hazards

 Instructions are sent to FUs out of order

 WRB stage:

 Once the execution completes, check for WAR hazards

Tomasulo’s Algorithm - Reservation Station

 Used in IBM 360/91 floating point unit (1967)

 Three ideas

 OOO execution using reservation stations (RS)

 Distributed instruction windows

 Register renaming to remove anti and output dependencies

 Read available input operands from RF and store them into RS (WAR removal)

 Assign new storage for output (WAW removal)

 Pipeline does not stall on WAW and WAR hazards

 Data forwarding using common data bus

 Bypass the data directly to the waiting instructions in RS

 Both register file and RS (source and dest) monitor the result bus and update data

when a matching tag is found

Tomasulo’s Algorithm

 FET-DEC/REN/ISS-REG-EXE-WRB-COM

 REN/ISS stage: check structural hazard (reservation station entry) and read

available operands from register file (register renaming for WAR) and assign

RS entry for destination (WAW hazard)

 REG stage: monitor common data bus and read operands into RS if there is

a match; determine highest priority operations among ready operations

(wakeup)

 EXE: execute and forward result to RS and RF

 Instruction buffers

 Instruction queue between FET and DEC/ISS stages

 can be omitted

 Reservation station between ISS and REG stages

 Reorder buffer between WRB and COM stages

 not in original proposal (IBM 360/91)

Renaming

 Removes anti and output dependencies

 Allows more than one pending update

 Several forms of renaming

 Tomasulo’s algorithm

 Reservation station for additional storage for name dependencies and common

data bus for data bypass

 Reorder buffer with associative lookup

 Associative lookup maps the reg id to the reorder buffer entry as soon as an entry

is allocated

 Register map table with separate physical register file

 Register map table (DEC 21264)

 Register alias table (Intel P6)

Renaming

 Assign one physical register for every instruction with a

destination register

 With 80 instructions in flight (reorder buffer size)

 You need roughly 80 physical registers (except branch and stores)

 physical registers are single-assignment registers

 Register renaming involves data dependence checking among the

instructions that are simultaneously being renamed

 Renaming bandwidth limited by

 Data dependence checking

 Number of read ports needed for register map table

Renaming

IEEE All rights reserved

Rename Example (P6)

IEEE All rights reserved

Rename Example (P6)

IEEE All rights reserved

Rename Example (P6)

IEEE All rights reserved

Rename Example (P6)

IEEE All rights reserved

PowerPC 620 - OOO example -

IEEE All rights reserved

DEC 21264 - OOO example -

IEEE All rights reserved

DEC 21264 - OOO example -

IEEE All rights reserved

Intel P6 - OOO example -

IEEE All rights reserved

Exercises and Discussion

 There can be many instruction buffers in an OOO

processor. Name those buffers and explain their

functions.

 What happens on a branch misprediction in OOO

processors?

Homework 2

 Read Chapter 3

 Exercise

 3.1

 3.2

 3.3

 3.4

 3.8

 3.13

 3.17

