Microprocessor Microarchitecture
Dependency and OOQO Execution

Lynn Chol
Dept. Of Computer and Electronics Engineering

@ HRERGFIR Computer System Laboratory

Three Forms of Dependence

Q True dependence (Read-After-Write)

» Also called flow dependence

» Require pipeline interlock

» Data bypass (forwarding) can reduce the producer latency
— Make values generated by FUs immediately available

a Output dependence (Write-After-Write)
a Anti dependence (Write-After-Read)

> Both of them are called false dependencies
» Require pipeline interlock or register renaming

R RS Computer System Laboratory

In-Order Pipeline

Q In-order i1ssue

» If an instruction is stalled in the pipeline, following instructions cannot proceed.
However, once issued to FUs, in general the instruction need not be stalled.

» Instruction can complete out-of-order

Q Dependency resolution mechanism
» Pipeline interlock

— Need reg-id comparators between sources and destinations of instructions in
REG stage and the destinations of instructions in the EXE and WRB stages

— Comparators needed for both interlock and bypass
» Scoreboard
— A busy bit for each register
— For long latency operations such as MEM operations
— Instead of comparators, you need to check scoreboard for operand availability
— Comparators are still needed for bypass!

R RS Computer System Laboratory

Example

QO FET-DEC-REG-EXE-WRB

a What kind of dependence violations are possible?
» Single-issue 5-stage in-order pipeline with the following pipelined FUs
— 2 INT unit (1 cycle INT operation)
— 1 FP unit (4 cycle FP operation)
— 2 MEM pipelines (2 cycle MEM operation)

A How many comparators do you need for the previous example?

— RAW
v 2srcs * 2 stages (E, W) * 2 INT =8
v 2 srcs *5 stages (E1, E2, E3, E4, W) *1 FP =10
- 2 srcs * 3 stages (E1, E2, W) * 2 MEM = 12

- WAW
v 1l dest* 3 stages (E1, E2,E3)*1 FP =3
v 1 dest* 1 stages (E1) * 2 MEM = 2

» WAW hazard can happen only for MEM and FP pipelines.

R RS Computer System Laboratory

Out-Of-Order Machines

a Anti-dependence can happen in OOO machines

DIV FO, F2, F4
ADD F10, FO, F8
SUB F8, F8, F14

Q Different approaches

» Scoreboarding
» Tomasulo’s Algorithm
» Register Update Unit

R RBAX Computer System Laboratory

Scoreboarding - cpcesoo-

Q Scoreboard
» One bit per register indicates whether or not there is a pending update

Q Pipeline stalls on WAW and WAR dependences

Q FET-DEC/ISS-REG-EXE-WRB

» DEC/ISSUE stage: check for WAW and structural hazards
— (Centralized) instruction window between ISS and REG stages

— Pipeline stalls on output dependence by checking scoreboard
~ Allows only 1 pending update

— Pipeline also stalls if there is no empty entry in the instruction window
» REG stage

— Resolve RAW hazards

— Instructions are sent to FUs out of order
» WRB stage:

— Once the execution completes, check for WAR hazards

R RS Computer System Laboratory

Tomasulo’s Algorlthm - Reservation Station

a Used in IBM 360/91 floating point unit (1967)

Q Three ideas

» OOO execution using reservation stations (RS)
— Distributed instruction windows
» Register renaming to remove anti and output dependencies
— Read available input operands from RF and store them into RS (WAR removal)
— Assign new storage for output (WAW removal)
— Pipeline does not stall on WAW and WAR hazards
» Data forwarding using common data bus
— Bypass the data directly to the waiting instructions in RS

— Both register file and RS (source and dest) monitor the result bus and update data
when a matching tag is found

R RS Computer System Laboratory

Tomasulo’s Algorithm

0O FET-DEC/REN/ISS-REG-EXE-WRB-COM

» REN/ISS stage: check structural hazard (reservation station entry) and read
available operands from register file (register renaming for WAR) and assign
RS entry for destination (WAW hazard)

» REG stage: monitor common data bus and read operands into RS if there is
a match; determine highest priority operations among ready operations
(wakeup)

» EXE: execute and forward result to RS and RF

Q Instruction buffers
» Instruction queue between FET and DEC/ISS stages
— can be omitted
» Reservation station between ISS and REG stages
» Reorder buffer between WRB and COM stages
— not in original proposal (IBM 360/91)

R RS Computer System Laboratory

Renaming

a Removes anti and output dependencies
» Allows more than one pending update

Q Several forms of renaming

» Tomasulo’s algorithm

— Reservation station for additional storage for name dependencies and common
data bus for data bypass

» Reorder buffer with associative lookup

— Associative lookup maps the reg id to the reorder buffer entry as soon as an entry
is allocated

» Register map table with separate physical register file
— Register map table (DEC 21264)
— Register alias table (Intel P6)

R RBAX Computer System Laboratory

Renaming

Q Assign one physical register for every instruction with a

destination register
» With 80 instructions in flight (reorder buffer size)
» You need roughly 80 physical registers (except branch and stores)
» physical registers are single-assignment registers

Q Register renaming involves data dependence checking among the

Instructions that are simultaneously being renamed

» Renaming bandwidth limited by
— Data dependence checking
— Number of read ports needed for register map table

R RS Computer System Laboratory

Renaming

MAP

final
map

CATION

N van ma | Physical
~> MAP TABLE | 0 ce
3Y¢C : : ‘
dest —— pnysical

FREE LIST | D°5t-y
8rc

dest

~——! TRUE DEPENDENCE
Sest| CHECK LOGIC

Jf

R RS

IEEE All rights reserved

- Control bits

Computer System Laboratory

Rename Example (P6)

Register Renaming: Step 1

RAT
EAX <- EAX + EBX

Logical ~ Physical EAX <- EAX + ECX
EAX R32 +

EBX R30
ECX ECX EAX <- R32 + R30

EAX <- R32 + ECX

IEEE All rights reserved

R RPIR Computer System Laboratory

Rename Example (P6) P
Register Renaming: Step 2

RAT

. . EAX <- R32 + R30
Logical Physical EAX <- R32 + ECX

EAX R32 >R} +
EBX

R33 <- R32 + R30
R34 <- R32 + ECX

IEEE All rights reserved

R RPIR Computer System Laboratory

Rename Example (P6)
Register Renaming: Step 3

RAT
Logical Physical

EAX R34

EBX R30

ECX ECX
I]

R RFAR

IEEE All rights reserve

d

R33 <- R32 + R30
R34 <- R32 + ECX

v

R33 <- R32 + R30
R34 <- R33 + ECX

Computer System Laboratory

Rename Example (P6)

Register Renaming: Step 4

Retired:
R33<-R32+R30 R29 ->EAX
R34 <- R33 + ECX R30->EBX

RAT
Logical Physical

EAX R34 +
EBX R30 -> EBX
EFCX ECX R33 <- R32 + EBX

I I R34 <- R33 + ECX

IEEE All rights reserved

R RPIR Computer System Laboratory

PowerPC 620

- OO0 example -

Register nos.

Branch correction .
! ‘ Reorder buffer information
Fetch Dispatch unit
unit with 8-entry -
; : Completion
\ instruction queue G
\ Instruction . recrder buffer
Instruction dispatich
cache buses
Register nos. |
‘ nos.
Instruction Register nos.
operation
GP operand buses | buses
FP operand buses
1 1 { } 2 Reservation § |
1T 1) T T =1 stations

GP result buses

R RS

FP result buses

Result status buses

Data
cache

IEEE All rights reserved

Computer System Laboratory

DEC 21264

- OO0 example -

- Feteh §Slot§ - ‘Rename: Issue Register read Execute: . Memo
0 £ 1, 2 3 4 5 8
- Integer |
; Integer | Integer execution | :
Branch Integer | : issue | | register - Addr
| predictor e register [queue - file Integer | - 775
¥ .| rename |1 (20 (80) execution | :
* * : entries) || g
: evel-
: = ‘ ; H Data
N\ Mux 7 ; it Integer cache | two
| I ; nteger exscution | : | (g4 Kbytes,[*] cache .
: l—» register . | ¢ land system|.
= : file i Addr| two-way) S
5 Integer | interface
(80) execution | :
Line/set : A
prediction : * P
tnstru'c1tion Floating- | : Flgz;:]r:g- . [Floating- Floating-point
) eache | point | | - . | point muitiply execution SR S
© {64 Kbytes, gleter [lizt:; ™ register o)
two-way) rename | : q(15) file Floating-point i:* ‘
* (72) add exscution e

Figure 2. Stages of the Alpha 21264 instruction pipeline.

IEEE All rights reserved

R RBAX Computer System Laboratory

DEC 21264 - OO0 example -

g0indiight | Arbiter

instructions o e e
Reguest’| iﬁmﬁf
ST ﬁ | ,sis ;.. ;

&

|

! | éejnternal " Redqister
| Map content- | ragiéter numbers . -scorgboard
addressable >

+| memorles | T ‘kg 5
.:. : . ‘» 1 . 4 :-:‘: ‘;:g;g.

T 80"
internel registere

L

Poay V. & ety
%&- i
..II:.

b
b

Gtk ST SRR BER

-. F_:iﬁ: P

lnstrucﬂnns(4)

IEEE All rights reserved

R RBAX Computer System Laboratory

Intel P6 - 000 example -

= BIU: Bus Interface Unit

» IFU: Ingtruction Fetch Unit ncludes [Cach
*» BTB: Branch Target Buffer

« |0: Instruction Decoder

« MIS: Microinstruction Sequencer

« RAT: Register Alias Table

« ROB: ReOrder Buffer

« RRF: Retirement Register File

» RS: Reservation Station

= [EL): Integer E xecution Unit

» FEU: Floating point Execution Unit

« AGU: Address Generation Unit

 MU: Memory Interface Unit

« OCU: Data Cache U nit (includes DCache)
« MOB: Memory ReOrder Buffer

«L2: Level 2 Cache

IEEE All rights reserved

R RS Computer System Laboratory

Exercises and Discussion

a There can be many instruction buffers in an OO0
processor. Name those buffers and explain their
functions.

a What happens on a branch misprediction in OOO
processors?

R RS Computer System Laboratory

Homework 2

A Read Chapter 3

Q Exercise
> 3.1
> 3.2
> 3.3
> 3.4
> 3.8
> 3.13
> 3.17

R RPIR Computer System Laboratory

