
Microprocessor Microarchitecture 

Dependency and OOO Execution 

Lynn Choi 

Dept. Of Computer and Electronics Engineering 



Three Forms of Dependence 

 True dependence (Read-After-Write) 

 Also called flow dependence 

 Require pipeline interlock  

 Data bypass (forwarding) can reduce the producer latency 

 Make values generated by FUs immediately available 

 Output dependence (Write-After-Write) 

 Anti dependence (Write-After-Read) 

 Both of them are called false dependencies 

 Require pipeline interlock or register renaming 

 



In-Order Pipeline 

 In-order issue 

 If an instruction is stalled in the pipeline, following instructions cannot proceed. 

However, once issued to FUs, in general the instruction need not be stalled. 

 Instruction can complete out-of-order 

 Dependency resolution mechanism 

 Pipeline interlock 

 Need reg-id comparators between sources and destinations of instructions in 

REG stage and the destinations of instructions in the EXE and WRB stages 

 Comparators needed for both interlock and bypass 

 Scoreboard 

 A busy bit for each register 

 For long latency operations such as MEM operations 

 Instead of comparators, you need to check scoreboard for operand availability 

 Comparators are still needed for bypass! 

 



Example 

 FET-DEC-REG-EXE-WRB 

 What kind of dependence violations are possible? 

 Single-issue 5-stage in-order pipeline with the following pipelined FUs 

 2 INT unit (1 cycle INT operation) 

 1 FP unit (4 cycle FP operation) 

 2 MEM pipelines (2 cycle MEM operation) 

 How many comparators do you need for the previous example? 

 RAW 

 2 srcs * 2 stages (E, W) * 2 INT = 8 

 2 srcs * 5 stages (E1, E2, E3, E4, W) * 1 FP = 10 

 2 srcs * 3 stages (E1, E2, W) * 2 MEM = 12 

 WAW 

 1 dest * 3 stages (E1, E2, E3) * 1 FP = 3 

 1 dest * 1 stages (E1) * 2 MEM = 2 

 WAW hazard can happen only for MEM and FP pipelines. 



Out-Of-Order Machines 

 Anti-dependence can happen in OOO machines 

   

 

 

      DIV  F0, F2, F4 

      ADD  F10, F0, F8 

      SUB F8, F8, F14 

 

 Different approaches 

 Scoreboarding 

 Tomasulo’s Algorithm 

 Register Update Unit  

 



Scoreboarding      - CDC6600 - 

 Scoreboard 
 One bit per register indicates whether or not there is a pending update 

 Pipeline stalls on WAW and WAR dependences 

 

 FET-DEC/ISS-REG-EXE-WRB 
 DEC/ISSUE stage: check for WAW and structural hazards 

 (Centralized) instruction window between ISS and REG stages 

 Pipeline stalls on output dependence by checking scoreboard 

 Allows only 1 pending update 

 Pipeline also stalls if there is no empty entry in the instruction window 

 REG stage 

 Resolve RAW hazards 

 Instructions are sent to FUs out of order 

 WRB stage:  

 Once the execution completes, check for WAR hazards 



Tomasulo’s Algorithm - Reservation Station 

 Used in IBM 360/91 floating point unit  (1967) 

 

 Three ideas 

 OOO execution using reservation stations (RS) 

 Distributed instruction windows 

 Register renaming to remove anti and output dependencies 

 Read available input operands from RF and store them into RS (WAR removal) 

 Assign new storage for output (WAW removal) 

 Pipeline does not stall on WAW and WAR hazards 

 Data forwarding using common data bus 

 Bypass the data directly to the waiting instructions in RS 

 Both register file and RS (source and dest) monitor the result bus and update data 

when a matching tag is found 

 



Tomasulo’s Algorithm 

 FET-DEC/REN/ISS-REG-EXE-WRB-COM 

 REN/ISS stage: check structural hazard (reservation station entry) and read 

available operands from register file (register renaming for WAR) and assign 

RS entry for destination (WAW hazard) 

 REG stage: monitor common data bus and read operands into RS if there is 

a match; determine highest priority operations among ready operations 

(wakeup) 

 EXE: execute and forward result to RS and RF 

 

 Instruction buffers 

 Instruction queue between FET and DEC/ISS stages 

 can be omitted 

 Reservation station between ISS and REG stages 

 Reorder buffer between WRB and COM stages 

 not in original proposal (IBM 360/91) 

 



Renaming 

 Removes anti and output dependencies 

 Allows more than one pending update 

 Several forms of renaming 

 Tomasulo’s algorithm 

 Reservation station for additional storage for name dependencies and common 

data bus for data bypass 

 Reorder buffer with associative lookup 

 Associative lookup maps the reg id to the reorder buffer entry as soon as an entry 

is allocated 

 Register map table with separate physical register file 

 Register map table (DEC 21264) 

 Register alias table (Intel P6) 

 

 



Renaming 

 Assign one physical register for every instruction with a 

destination register 

 With 80 instructions in flight (reorder buffer size) 

 You need roughly 80 physical registers (except branch and stores) 

 physical registers are single-assignment registers 

 Register renaming involves data dependence checking among the 

instructions that are simultaneously being renamed 

 Renaming bandwidth limited by 

 Data dependence checking 

 Number of read ports needed for register map table 

 



Renaming 
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Rename Example (P6) 
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Rename Example (P6) 
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Rename Example (P6) 

IEEE All rights reserved 



Rename Example (P6) 

IEEE All rights reserved 



PowerPC 620       - OOO example - 
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DEC 21264       - OOO example - 
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DEC 21264       - OOO example - 
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Intel P6       - OOO example - 
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Exercises and Discussion 

 There can be many instruction buffers in an OOO 

processor. Name those buffers and explain their 

functions. 

 What happens on a branch misprediction in OOO 

processors?  



Homework 2 

 Read Chapter 3 

 Exercise 

 3.1 

 3.2 

 3.3 

 3.4 

 3.8 

 3.13 

 3.17 

 


