
Microprocessor Microarchitecture

Dependency and OOO Execution

Lynn Choi

Dept. Of Computer and Electronics Engineering

Three Forms of Dependence

 True dependence (Read-After-Write)

 Also called flow dependence

 Require pipeline interlock

 Data bypass (forwarding) can reduce the producer latency

 Make values generated by FUs immediately available

 Output dependence (Write-After-Write)

 Anti dependence (Write-After-Read)

 Both of them are called false dependencies

 Require pipeline interlock or register renaming

In-Order Pipeline

 In-order issue

 If an instruction is stalled in the pipeline, following instructions cannot proceed.

However, once issued to FUs, in general the instruction need not be stalled.

 Instruction can complete out-of-order

 Dependency resolution mechanism

 Pipeline interlock

 Need reg-id comparators between sources and destinations of instructions in

REG stage and the destinations of instructions in the EXE and WRB stages

 Comparators needed for both interlock and bypass

 Scoreboard

 A busy bit for each register

 For long latency operations such as MEM operations

 Instead of comparators, you need to check scoreboard for operand availability

 Comparators are still needed for bypass!

Example

 FET-DEC-REG-EXE-WRB

 What kind of dependence violations are possible?

 Single-issue 5-stage in-order pipeline with the following pipelined FUs

 2 INT unit (1 cycle INT operation)

 1 FP unit (4 cycle FP operation)

 2 MEM pipelines (2 cycle MEM operation)

 How many comparators do you need for the previous example?

 RAW

 2 srcs * 2 stages (E, W) * 2 INT = 8

 2 srcs * 5 stages (E1, E2, E3, E4, W) * 1 FP = 10

 2 srcs * 3 stages (E1, E2, W) * 2 MEM = 12

 WAW

 1 dest * 3 stages (E1, E2, E3) * 1 FP = 3

 1 dest * 1 stages (E1) * 2 MEM = 2

 WAW hazard can happen only for MEM and FP pipelines.

Out-Of-Order Machines

 Anti-dependence can happen in OOO machines

 DIV F0, F2, F4

 ADD F10, F0, F8

 SUB F8, F8, F14

 Different approaches

 Scoreboarding

 Tomasulo’s Algorithm

 Register Update Unit

Scoreboarding - CDC6600 -

 Scoreboard
 One bit per register indicates whether or not there is a pending update

 Pipeline stalls on WAW and WAR dependences

 FET-DEC/ISS-REG-EXE-WRB
 DEC/ISSUE stage: check for WAW and structural hazards

 (Centralized) instruction window between ISS and REG stages

 Pipeline stalls on output dependence by checking scoreboard

 Allows only 1 pending update

 Pipeline also stalls if there is no empty entry in the instruction window

 REG stage

 Resolve RAW hazards

 Instructions are sent to FUs out of order

 WRB stage:

 Once the execution completes, check for WAR hazards

Tomasulo’s Algorithm - Reservation Station

 Used in IBM 360/91 floating point unit (1967)

 Three ideas

 OOO execution using reservation stations (RS)

 Distributed instruction windows

 Register renaming to remove anti and output dependencies

 Read available input operands from RF and store them into RS (WAR removal)

 Assign new storage for output (WAW removal)

 Pipeline does not stall on WAW and WAR hazards

 Data forwarding using common data bus

 Bypass the data directly to the waiting instructions in RS

 Both register file and RS (source and dest) monitor the result bus and update data

when a matching tag is found

Tomasulo’s Algorithm

 FET-DEC/REN/ISS-REG-EXE-WRB-COM

 REN/ISS stage: check structural hazard (reservation station entry) and read

available operands from register file (register renaming for WAR) and assign

RS entry for destination (WAW hazard)

 REG stage: monitor common data bus and read operands into RS if there is

a match; determine highest priority operations among ready operations

(wakeup)

 EXE: execute and forward result to RS and RF

 Instruction buffers

 Instruction queue between FET and DEC/ISS stages

 can be omitted

 Reservation station between ISS and REG stages

 Reorder buffer between WRB and COM stages

 not in original proposal (IBM 360/91)

Renaming

 Removes anti and output dependencies

 Allows more than one pending update

 Several forms of renaming

 Tomasulo’s algorithm

 Reservation station for additional storage for name dependencies and common

data bus for data bypass

 Reorder buffer with associative lookup

 Associative lookup maps the reg id to the reorder buffer entry as soon as an entry

is allocated

 Register map table with separate physical register file

 Register map table (DEC 21264)

 Register alias table (Intel P6)

Renaming

 Assign one physical register for every instruction with a

destination register

 With 80 instructions in flight (reorder buffer size)

 You need roughly 80 physical registers (except branch and stores)

 physical registers are single-assignment registers

 Register renaming involves data dependence checking among the

instructions that are simultaneously being renamed

 Renaming bandwidth limited by

 Data dependence checking

 Number of read ports needed for register map table

Renaming

IEEE All rights reserved

Rename Example (P6)

IEEE All rights reserved

Rename Example (P6)

IEEE All rights reserved

Rename Example (P6)

IEEE All rights reserved

Rename Example (P6)

IEEE All rights reserved

PowerPC 620 - OOO example -

IEEE All rights reserved

DEC 21264 - OOO example -

IEEE All rights reserved

DEC 21264 - OOO example -

IEEE All rights reserved

Intel P6 - OOO example -

IEEE All rights reserved

Exercises and Discussion

 There can be many instruction buffers in an OOO

processor. Name those buffers and explain their

functions.

 What happens on a branch misprediction in OOO

processors?

Homework 2

 Read Chapter 3

 Exercise

 3.1

 3.2

 3.3

 3.4

 3.8

 3.13

 3.17

