MANIPULATIVES AND CREATIVITY

Dr. Dong-Joong Kim Department of Mathematics Education KOREA UNIVERSITY

Epistemology and Sense

Senses are physiological capacities of organisms that provide data for perception (Wikipedia, 2013)
Five senses: hearing, sight, touch, taste, and smell
Other senses: balance, pain, other internal senses
How are senses related to students' epistemology?

Senses for Epistemology

Interwoven and interrelated senses and their synergic effects on students' epistemology

How to enact creativity education? Senses?

How to enact creativity education? Contents?

Detailed Course Schedules

- Week 1: Classroom rules
- Week 2 5: Storytelling & creativity
- Week 6 7: Discussion & field experience

Sight

- Week 8 9: Manipulatives & creativity
- Week 9 10: Field experience & discussion
- Week 11 12: Representation & creativity
- Week 13: Discussion
- Week 13 15: Group presentation
- Week 16: Survey

What are manipulatives?

- Manipulatives is any of various objects or materials that students can touch and move around in order to help them learn mathematical and other concepts (Dictionary.com, 2013)
- Manipulatives is any of physical objects to support (develop or reinforce) students' mathematical thinking

Why manipulatives?

- Students' active engagement in learning process (by physical movement and interests)
- From the concrete to the abstract level
- From the semiconcrete (representation of a real situation) to the semiabstract (symbolic representation of concrete items) (Heddens, 1986)
- From knowing to doing

Learning and the use of manipulatives (Adding it up, 2001)

- Manipulatives should be considered as not an end, but as a means in themselves.
- Students need sufficient time to build meaning and make connections.
- It can be a challenge for students to see mathematical ideas in them (manipulatives).

Learning and the use of manipulatives (Adding it up, 2001)

- Manipulatives also help students correct their own errors.
- If students do not see the connections among object, symbol, language, and idea, using a manipulatives becomes just one more thing to learn rather than a process learning to a larger mathematical learning goal.

First Example of manipulatives (Sums of interior and exterior angles)

http://www.mathlove.kr/shop/board/view.php?id =mathmovie&tm=1&menus=share2&no=49

From www.mathlove.co.kr

Second Example of manipulatives (circular cone = 1/3×circular cylinder) (pyramid = 1/3×prism in volume)

http://www.mathlove.kr/shop/board/view.php?id =mathmovie&tm=1&menus=share2&no=44

from www.mathlove.co.kr

Third Example of manipulatives (Pythagorean Theorem)

- http://www.mathlove.kr/shop/board/view.php?id =mathmovie&tm=1&menus=share2&page=3&no=5 from www.mathlove.co.kr
- Paper folding from MATHEMATICA 1: The Pythagorean theorem 1

Fourth Example of manipulatives $(a-b)^2 = a^2 - 2ab + b^2$

■ 김유정<u>선생</u>

Reference

- Heddens, J. (1986). Bridging the gap between the concrete and the abstract. *Arithmetic Teacher*, 33(6), 14-17.
- Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001). *Adding It Up: Helping Children Learn Mathematics*. Washington, DC: National Academies Press.

