MANIPULATIVES AND CREATIVITY

Dr. Dong-Joong Kim

Department of Mathematics Education KOREA UNIVERSITY

Epistemology and Sense

\square Senses are physiological capacities of organisms that provide data for perception (Wikipedia, 2013)
\square Five senses: hearing, sight, touch, taste, and smell
\square Other senses: balance, pain, other internal senses
\square How are senses related to students' epistemology?

Senses for Epistemology

Interwoven and interrelated senses and their synergic effects on students' epistemology

How to enact creativity education?

 Senses?
Hearing

How to enact creativity education? Contents?

Detailed Course Schedules

- Week 1: Classroom rules
- Week 2-5:
\& creativity
- Week 6-7: Discussion \& field experience
- Week 8-9: Manipulative \& creativity
- Week 9-10: Field experience \& discussion
- Week 11-12: Representation \& creativity
- Week 13: Discussion
- Week 13-15: Group presentation
- Week 16: Survey

What are manipulatives?

\square Manipulatives is any of various objects or materials that students can touch and move around in order to help them learn mathematical and other concepts (Dictionary.com, 2013)
\square Manipulatives is any of physical objects to support (develop or reinforce) students' mathematical thinking

Why manipulatives?

\square Students' active engagement in learning process (by physical movement and interests)

- From the concrete to the abstract level
\square From the semiconcrete (representation of a real situation) to the semiabstract (symbolic representation of concrete items) (Heddens, 1986)
- From knowing to doing

Learning and the use of manipulatives

 (Adding it up, 2001)\square Manipulatives should be considered as not an end, but as a means in themselves.
\square Students need sufficient time to build meaning and make connections.
\square It can be a challenge for students to see mathematical ideas in them (manipulatives).

Learning and the use of manipulatives

 (Adding it up, 2001)\square Manipulatives also help students correct their own errors.
\square If students do not see the connections among object, symbol, language, and idea, using a manipulatives becomes just one more thing to learn rather than a process learning to a larger mathematical learning goal.

First Example of manipulatives (Sums of interior and exterior angles)

\square

From WWW.mathlove.co.kr

Second Example of manipulatives (circular cone $=1 / 3 \times$ circular cylinder) (pyramid $=1 / 3 \times$ prism in volume)
from www.mathlove.co.kr

Third Example of manipulatives (Pythagorean Theorem)

from www.mathlove.co.kr
\square Paper folding from MATHEMATICA 1: The Pythagorean theorem

Fourth Example of manipulatives

$$
(a-b)^{2}=a^{2}-2 a b+b^{2}
$$

미 김유정

Reference

\square Heddens, J. (1986). Bridging the gap between the concrete and the abstract. Arithmetic Teacher, 33(6), 14-17.
\square Kilpatrick, J., Swafford, J., \& Findell, B. (Eds.). (2001). Adding It Up: Helping Children Learn Mathematics. Washington, DC: National Academies Press.
Q\&A

