Numerical Analysis MTH614

Spring 2012, Korea University

Numerical Integration

Trapezoidal rule

To derive the Trapezoidal rule for approximating $\int_{a}^{b} f(x) d x$, let the
linear polynomial $p_{1}(x)$ such that

$$
\begin{equation*}
p_{1}(x)=\frac{(b-x) f(a)+(x-a) f(b)}{b-a} \tag{1}
\end{equation*}
$$

Then, we integrate $p_{1}(x)$ from a to b,

$$
\begin{equation*}
\int_{a}^{b} p_{1}(x)=(b-a)\left(\frac{f(a)+f(b)}{2}\right) \tag{2}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\int_{a}^{b} p_{1}(x) \approx T_{1}(f)=(b-a)\left(\frac{f(a)+f(b)}{2}\right) \tag{3}
\end{equation*}
$$

where $\quad h=(b-a) / n$ and $x_{i}=a+i \cdot h$ for $0,1, \ldots, n$.

For each sub-interval $\left[x_{i}, x_{i+1}\right]$ of the $[a, b]$

$$
\begin{align*}
\int_{a}^{b} f(x) d x & =\int_{x_{0}}^{x_{n}} f(x) d x \tag{1}\\
& =\int_{x_{0}}^{x_{1}} f(x) d x+\int_{x_{1}}^{x_{2}} f(x) d x+\cdots+\int_{x_{n-1}}^{x_{n}} f(x) d x . \tag{1}
\end{align*}
$$

If we apply the trapezoidal rule for

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx \frac{h}{2} \sum_{i=1}^{n}\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right] . \tag{2}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
T_{n}(f) \equiv \frac{h}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] . \tag{3}
\end{equation*}
$$

For example, integrate the exponential function

$$
I=\int_{0}^{1} e^{x} d x=e-1
$$

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% trape.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear; clc; a=0; b=1; % end points of interval
f=inline('exp(x)','x');
n=[11 2 4 4 8 16 32 64 128 256 512 1024 2048];
% number of subintervals
error0=0;
fprintf(' n numerical sum error ratio \n')
for iter=1:length(n)
    h=(b-a)/n(iter);
    T=0;
    for i=1:n(iter)
        T}=\textrm{T}+\textrm{f}(\textrm{a}+(\textrm{i}-1)*\textrm{h})+\textrm{f}(\textrm{a}+(\textrm{i})*\textrm{h})
    end
    T=(h/2)*T;
    error=abs(exp(1)-1-T);
    ratio=error0/error;
    if iter==1
    fprintf('%4.0f %16.14f %5.4e \n',n(iter),T,error)
    else
    fprintf('%4.0f %16.14f %5.4e %5.2f \n',n(iter), ...
        T,error, log(ratio)/log(2))
    end
    error0=error;
end
```

n	numerical sum	error	ratio
1	1.85914091422952	$1.4086 \mathrm{e}-001$	
2	1.75393109246483	$3.5649 \mathrm{e}-002$	1.98
4	1.72722190455752	$8.9401 \mathrm{e}-003$	2.00
8	1.72051859216430	$2.2368 \mathrm{e}-003$	2.00
16	1.71884112857999	$5.5930 \mathrm{e}-004$	2.00
32	1.71842166031633	$1.3983 \mathrm{e}-004$	2.00
64	1.71831678685009	$3.4958 \mathrm{e}-005$	2.00
128	1.71829056808348	$8.7396 \mathrm{e}-006$	2.00
256	1.71828401336682	$2.1849 \mathrm{e}-006$	2.00
512	1.71828237468610	$5.4623 \mathrm{e}-007$	2.00
1024	1.71828196501581	$1.3656 \mathrm{e}-007$	2.00
2048	1.71828186259824	$3.4139 \mathrm{e}-008$	2.00

Simpson's rule

Aside from applying the trapezoidal rule with finer segmentation, another way to obtain a more accurate estimate of an integral is to use higher order polynomials.

Instead of using a linear connection, given three points $a, c=(a+b) / 2$, and b are connected with a parabola such that

$$
\begin{equation*}
p_{2}(x)=f(a) \frac{(x-b)(x-c)}{(a-b)(a-c)}+f(b) \frac{(x-a)(x-c)}{(b-a)(b-c)}+f(c) \frac{(x-a)(x-b)}{(c-a)(c-b)} . \tag{1}
\end{equation*}
$$

The result of the integration is

$$
\begin{equation*}
\int_{a}^{b} p_{2}(x) d x=\frac{h}{3}[f(a)+4 f(c)+f(b)], h=\frac{b-a}{2} . \tag{2}
\end{equation*}
$$

This gives Simpson's rule

$$
\begin{equation*}
\int_{a}^{b} p_{2}(x) d x \approx S_{2}(f) \equiv \frac{h}{3}[f(a)+4 f(c)+f(b)] . \tag{3}
\end{equation*}
$$

Let us derive the general form of Simpson's rule.
For any even number n, the endpoints a and b of each interval $[a, b]$ divide the real line into partitions n equal segments with a stepsize h such that $a=x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}=b$.

The total integral can be represented as

$$
\begin{align*}
\int_{a}^{b} f(x) d x & =\int_{x_{0}}^{x_{n}} f(x) d x \\
& =\int_{x_{0}}^{x_{2}} f(x) d x+\int_{x_{2}}^{x_{4}} f(x) d x+\cdots+\int_{x_{n}-2}^{x_{n}} f(x) d x . \tag{1}
\end{align*}
$$

For each subinterval $\left[x_{i}, x_{i+2}\right]$, we apply Simpson's rule to (1)

$$
\begin{equation*}
\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+\frac{h}{3}\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+\cdots+\frac{h}{3}\left[f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]\right. \tag{2}
\end{equation*}
$$

Therefore, we obtain

$$
\begin{align*}
S_{n}(f) & \equiv \frac{h}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+2 y_{4}+\cdots+2 y_{n-2}+4 y_{n-1}+y_{n}\right) \tag{3}\\
& =\sum_{i=1}^{n / 2} \frac{h}{3}\left(y_{2 i-2}+4 y_{2 i-1}+y_{2 i}\right) . \tag{4}
\end{align*}
$$

For example, use Simpson's rule to integral $I=\int_{0}^{1} e^{x} d x=e-1$.

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% simpson.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear; clc; a=0; b=1; % end points of interval
f=inline('exp(x)', 'x');
n=[\begin{array}{llllllllllll}{2}&{4}&{8}&{16}&{32}&{64}&{128}&{256}&{512}\end{array}];
% number of subintervals
error0=0;
fprintf(' n numerical sum error ratio \n')
for iter=1:length(n)
    h=(b-a)/n(iter);
    S=0;
    for i=1:n(iter)/2
        S=S+f(a+2*(i-1)*h)+4.0*f(a+(2*i-1)*h)+f(a+2*i*h);
    end
    S=(h/3)*S;
    error=abs(exp(1)-1-S);
    ratio=error0/error;
    if iter==1
    fprintf('%4.0f %16.14f %5.4e \n',n(iter),S,error)
    else
    fprintf(%%4.0f %16.14f %5.4e %5.2f \n',n(iter), ...
        S,error,log(ratio)/log(2))
    end
    error0=error;
end
```

n	numerical sum	error	ratio
2	1.71886115187659	$5.7932 \mathrm{e}-004$	
4	1.71831884192175	$3.7013 \mathrm{e}-005$	3.97
8	1.71828415469990	$2.3262 \mathrm{e}-006$	3.99
16	1.71828197405189	$1.4559 \mathrm{e}-007$	4.00
32	1.71828183756177	$9.1027 \mathrm{e}-009$	4.00
64	1.71828182902802	$5.6897 \mathrm{e}-010$	4.00
128	1.71828182849461	$3.5560 \mathrm{e}-011$	4.00
256	1.71828182846127	$2.2233 \mathrm{e}-012$	4.00
512	1.71828182845918	$1.3789 \mathrm{e}-013$	4.01

Improper integration

As the notion of integration is extended either to an interval of integration on which the function is unbounded, or to an interval wit h one or more infinite endpoints. In either case, the function has a singularity at one of the endpoints.

In this lecture, we show that the improper integrals can be reduced to problems of this form

$$
\begin{equation*}
\int_{a}^{b} \frac{d x}{(x-a)^{p}} \tag{1}
\end{equation*}
$$

P-test in calculus states the improper integral with a singularity at the left end point converges if and only if $0<p<1$, and define

$$
\int_{a}^{b} \frac{1}{(x-a)^{p}} d x=\left.\frac{(x-a)^{1-p}}{1-p}\right|_{a} ^{b}=\frac{(b-a)^{1-p}}{1-p}
$$

If f is a function that can be written in the form

$$
f(x)=\frac{g(x)}{(x-a)^{p}},
$$

where $0<p<1$ and $g \in C^{5}[a, b]$, then the improper integral also exists.
In that case, we can construct the fourth Taylor polynomial

$$
\begin{align*}
P_{4}(x) & =g(a)+g^{\prime}(a)(x-a)+\frac{g^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{g^{(3)}(a)}{3!}(x-a)^{3}+\frac{g^{(4)}(a)}{4!}(x-a)^{4} \tag{2}\\
& =\sum_{k=0}^{4} \frac{g^{(k)}(a)}{k!}(x-a)^{k} .
\end{align*}
$$

Then, we can separate

$$
\begin{equation*}
\int_{a}^{b} \frac{g(x)}{(x-a)^{p}} d x=\underbrace{\int_{a}^{b} \frac{g(x)-P_{4}(x)}{(x-a)^{p}} d x}_{(a)}+\underbrace{\int_{a}^{b} \frac{P_{4}(x)}{(x-a)^{p}} d x}_{(b)} \tag{1}
\end{equation*}
$$

Rewrite part (b) as

$$
\begin{align*}
\int_{a}^{b} \frac{P_{4}(x)}{(x-a)^{p}} d x & =\sum_{k=0}^{4} \int_{a}^{b} \frac{g^{(k)}(a)}{k!}(x-a)^{k-p} d x \\
& =\sum_{k=0}^{4} \frac{g^{(k)}(a)}{k!(k-p+1)}(b-a)^{k-p+1} . \tag{2}
\end{align*}
$$

and part (a) follows that

$$
\begin{equation*}
\int_{a}^{b} \frac{g(x)-P_{4}(x)}{(x-a)^{p}} d x \approx \int_{a}^{b} G(x) d x \tag{3}
\end{equation*}
$$

where $G(x)$ is given

$$
G(x)=\left\{\begin{array}{cl}
\frac{g(x)-P_{4}(x)}{(x-a)^{p}} & a<x \leq b \tag{4}\\
0 & x=a .
\end{array}\right.
$$

Therefore, we obtain numerical solution from (2) and (3).

For example, integrate the exponential function $\int_{0}^{1} \frac{e^{x}}{\sqrt{x}} d x$.
First of all, let us separate the exponential function using $P_{4}(x)$,

$$
\begin{equation*}
\int_{0}^{1} \frac{e^{x}}{\sqrt{x}} d x=\int_{0}^{1} \frac{e^{x}-P_{4}(x)}{\sqrt{x}}+\int_{0}^{1} \frac{P_{4}(x)}{\sqrt{x}} \tag{1}
\end{equation*}
$$

where $P_{4}(x)$ is given as

$$
\begin{equation*}
P_{4}(x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!} \tag{2}
\end{equation*}
$$

and then define $G(x)$ such that

$$
G(x)=\left\{\begin{array}{cl}
\frac{e^{x}-P_{4}(x)}{\sqrt{x}} & 0<x \leq 1 \tag{3}\\
0 & x=0
\end{array}\right.
$$

Next, the part (a) of the equation is calculated at discrete points

$$
\left\{x_{i} \mid x_{i}=h \cdot i, h=(1 / 4), \text { for } i=0, \ldots, 4 .\right\} .
$$

We find that

x	0.0000	0.25	0.50	0.75	1.00
$\mathrm{G}(\mathrm{x})$	0.0000	0.0000170	0.0001013	0.0026026	0.0099485

$$
\begin{align*}
\int_{0}^{1} G(x) d x & \approx \frac{0.25}{3}[0+4(0.0000170)+2(0.0004013)+4(0.0026026)+(0.0099485)] \tag{1}\\
& =0.0017691
\end{align*}
$$

The part (b) can be calculated

$$
\begin{align*}
(b): \int_{0}^{1} \frac{P_{4}(x)}{\sqrt{x}} d x & =\int_{0}^{1}\left(x^{-\frac{1}{2}}+x^{\frac{1}{2}}+\frac{1}{2} x^{\frac{3}{2}}+\frac{1}{6} x^{\frac{5}{2}}+\frac{1}{24} x^{\frac{7}{2}}\right) d x \\
& =\left[2 x^{\frac{1}{2}}+\frac{2}{3} x^{\frac{3}{2}}+\frac{1}{5} x^{\frac{5}{2}}+\frac{1}{21} x^{\frac{7}{2}}+\frac{1}{108} x^{\frac{9}{2}}\right]_{0}^{1} \\
& =2+\frac{2}{3}+\frac{1}{5}+\frac{1}{21}+\frac{1}{108} \tag{2}\\
& =2.9235450 .
\end{align*}
$$

We can then add up these two parts,

$$
\int_{0}^{1} \frac{e^{x}}{\sqrt{x}} d x \approx 0.0017691+2.9235450=2.9253141
$$

