Numerical Analysis MTH614

Spring 2012, Korea University

> MATLAB basic II Graph plots

2 Dimensional plot

- Basic commands
- figure : figure creates figure graphics objects.
- hold on : hold on retains the current graph and adds another graph to it.
- hold off : hold off resets hold on.
- plot
- $\operatorname{plot}(\mathrm{Y})$ plots the columns of Y versus the index of each value when Y is a real number.
- $\operatorname{plot}(X, Y)$ plots the columns of Y versus the corresponding X values.
- Can choose colors and line styles in the order specified by Color and Line Style command, $\operatorname{plot}(X, Y, S)$.
- Allowable color and symbols types are summarized in the following tables.

'c' character	Line color
y	yellow
m	magenta
c	cyan
r	red
g	green
b	blue
w	white
k	black

'ss' string	symbol
-	point
-	circle
X	X-mark
+	plus
-	solid line
*	star
:	dotted line
-	dashdot line

For example, plot(X, Y, 'b'); plot(X1, Y1, 'o', X2, Y2, 'x', X3,Y3,' -');

For example

```
t=linspace(0,2*pi,100); x=2*\operatorname{cos}(t); y=2*\operatorname{sin}(\textrm{t});
plot(x,y)
```


$p \operatorname{lot}\left(x, \sin (x),{ }^{\prime} k--, x, \cos (x), ' k o\right.$ ').

- Polar coordinates
"polar" matlab command enables us to draw the graphs of polar equations having the form $r=f(\theta)$.

For example

$$
r=\sin 2 \theta \cos 2 \theta, \quad 0 \leq \theta \leq 2 \pi
$$

```
t = 0:0.01:2*pi;
polar(t,sin(2*t).*\operatorname{cos}(2*t),'k-')
```


- Bar graph
$\operatorname{bar}(X, Y)$ draws a bar for each element in Y at locations specified in X.
For example
Let us draw the exponential function with the bar command.

$$
\begin{aligned}
& y=e^{-x^{2}} \\
& \mathrm{x}=-2.9: 0.2: 2.9 \\
& \operatorname{bar}\left(\mathrm{x}, \exp (-\mathrm{x} \cdot * \mathrm{x}),^{\prime} \mathrm{k}^{\prime}\right)
\end{aligned}
$$

- Stairstep graph
stairs(X,Y) plots a stairstep graph of elements of Y at the locations specified in X.

For example

```
x = -5:0.25:5;
stairs(x,\operatorname{sin}(x),'k-')
```


-3-D line plot
plot3($\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z1}$), where $\mathrm{X} 1, \mathrm{Y} 1$, Z 1 are vectors, plots one line in threedimensional space through the points whose coordinates are the elements of $\mathrm{X} 1, \mathrm{Y} 1$, and $\mathrm{Z1}$.

For example, let us draw a curve in three dimensional space. We have a function $f(t)=\cos 3 t \mathbf{i}+\sin 3 t \mathbf{j}+t^{2} \mathbf{k}$ in given interval $[0,10]$.

```
t = 0:0.01:10; x = cos(3*t); y = sin(3*t); z = t.^2;
plot3(x,y,z,'k-')
```


- Mesh plot
meshgrid: Generate X and Y matrices for three-dimensional plot.
- $[\mathrm{X}, \mathrm{Y}]=$ meshgrid(xmin:xmax, $y \min : y \max)$
mesh (X, Y, Z) draws a wireframe mesh with color determined by the height or the value of Z. Since X and Y are matrices, $(X(i, j), Y(i, j), Z(i, j))$ are the intersections of the wireframe grid lines.
meshc (X, Y, Z) also draws a contour plot beneath the mesh.

For example, we create a three dimensional surface $z=x e^{-x^{2}-y^{2}}$. First, define the domain $[-2,2] \times[-1,1] \in \mathbb{R}^{2}$ using meshgird command. Then we evaluate the function.
Let's see the following MATLAB script
Draw a wireframe mesh

```
[X,Y] = meshgrid(-2:0.1:2, -2:0.1:2);
Z = X.*exp(-X.^2 -Y.^2); mesh(Z)
```


Plot a contour graph under mesh graph

```
[x,y] = meshgrid(-2:0.1:2, -2:0.1:2);
z = x.*exp(-x.^2 -y.^2); meshc(x,y,z);
```


velocity plot "quiver"
A quiver plot displays velocity vectors as arrows with components (u, v) at the points (x, y).

MATLAB command "quiver (x, y, u, v) " plots vectors as arrows at the coordinates specified in each corresponding pair of elements in x and y .
For example, we draw the vector plot of the same function $z=x e^{-x^{2}-y^{2}}$.

```
[x,y] = meshgrid(-2:0.2:2); z = x.*exp(-x.^2 -y. ^2);
[px,py] = gradient(z,0.2,0.2); contour(x,y,z)
hold on; quiver(x,y,px,py)
```


- Isosurface
$\mathrm{fv}=$ isosurface ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{V}$, isovalue) computes isosurface data from the volume data V at the isosurface value specified in isovalue. You can pass the fv structure created by isosurface directly to the patch command.
patch can create one or more filled polygons.
Set also can handle graphics object properties.
For example, we draw a sphere using isosurface, patch, and set.

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% show_i sosur .m %%%%%%%%%%%%%%%%%%%%%%%%%
clear; n=64; x=linspace(0,1,n) ; y=x; z=x;
[xx,yy,zz]=meshgrid(x,y,z);
for k=1:n
for j=1:n
    for i=1:n
        S(i,j,k)=0.5*(1.0+tanh(0.25-sqrt ((x(i)-0.5)^2+(y(j)-0.5)^2+\ldots
                    (z(k)-0.5)~2)));
    end
    end
end
p=patch(isosurface(xx,yy,zz,S,0.5));
```

set(p,'FaceColor', 'magenta', 'EdgeColor', 'none'); daspect([[10 181$]$)
camlight;lighting phong; axis image;
axis([llllllll)

