Numerical Analysis MTH614

Spring 2012, Korea University

MATLAB basic I Operations

Assignment and operations

Type name=value Enter

- Scalar
$\gg \mathrm{a}=1$ Enter
$\mathrm{a}=1$
- Vectors Indexing
- Row vector
$\left.\begin{array}{lll}\gg \\ b=1 & 2 & 3\end{array}\right]$ Enter

> - Column vector
> >> $\mathrm{b}=[1 ; 2 ; 3]$ Enter
> $\mathrm{b}=1$

2
3

- Once a vector has been created, it may be assigned to another vector.
$\gg \mathrm{c}=\mathrm{b}$ Enter
c $=1$
2
- And we can transpose it.
$\begin{array}{lll}\gg y & \text { c=b } & \text { Enter } \\ c=1 & 2 & 3\end{array}$

3

- Matrix Indexing

Now consider indexing into an 3×3 matrix A.
$\gg A=\left[\begin{array}{lllllll}1 & 2 & 3 ; 4 & 5 & 6 ; 7 & 8 & 9\end{array}\right]$ Enter
$\begin{array}{lll}A=1 & 2\end{array}$
$4 \quad 5 \quad 6$
$\begin{array}{ll}7 & 8\end{array}$

- Similarly we can transpose the matrix A.
>> A' Enter
ans $=1 \quad 4 \quad 7$
$2 \quad 5 \quad 8$
$\begin{array}{ll}3 & 6\end{array}$
- Matrix operations
- Matrix multiplication A*B

$$
A B=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right)=\left(\begin{array}{ll}
19 & 22 \\
43 & 50
\end{array}\right)
$$

- Matrix Inverse

A*inv(B)

$$
A B^{-1}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{cc}
-4 & 3 \\
3.5 & 2.5
\end{array}\right)=\left(\begin{array}{cc}
3 & -2 \\
2 & -1
\end{array}\right)
$$

- Element-by-element product

$$
\text { A.* (B) } \quad\left(\begin{array}{cc}
1.5 & 2 \cdot 6 \\
3 \cdot 7 & 4 \cdot 8
\end{array}\right)=\left(\begin{array}{cc}
5 & 12 \\
21 & 32
\end{array}\right)
$$

- Array power
A.^ (B)

$$
\left(\begin{array}{ll}
1^{5} & 2^{6} \\
3^{7} & 4^{8}
\end{array}\right)=\left(\begin{array}{cc}
1 & 64 \\
2187 & 65536
\end{array}\right)
$$

- Basic commands
- Special Characters
, (Comma) : Separates statements and elements in a row.
...(Ellipsis) : Line-continuation operator.
; (Semicolon) : Separates columns and suppresses display.
\%(Percent sign) : Designates a comment.
- Managing variables

$$
\begin{array}{ll}
\text { clc } & \text { : Clears Command window. } \\
\text { clf } & \text { : Deletes from the current figure. } \\
\text { clear } & \text { : Removes variables from memory. } \\
\text { whos } & \text { : Lists current variables. }
\end{array}
$$

- Loop control
- For: The for loop repeats a group of statements a fixed, predetermined number of times. A matching end delineates the statements
For example

```
for x=0:0.5:1
    a=2^x
end
    This example of a for loop where the increment
    is 0.5 starting from 0 and ending with 1.
for k=5:-2:1
\(\mathrm{b}=\mathrm{k}\)
end
```

Results

$$
\begin{aligned}
& \mathrm{a}=1 \\
& \mathrm{a}=1.4142 \\
& \mathrm{a}=2 \\
& \mathrm{~b}=5 \\
& \mathrm{~b}=3 \\
& \mathrm{~b}=1
\end{aligned}
$$

- if : If conditional statements enable you to select at run time which block of code to execute.

For example

```
a=3; if a<1
    b=a+1
else
    c=a+2
end
```

Results

```
c = 5
```

- while: while loop repeats a group of statements an indefinite number of times under control of a logical condition.

```
a=1;
while a<4
    a=a+1
end
```

Results
$a=2$
$\mathrm{a}=3$
$a=4$
-linspace : The linspace function generates equally spaced vectors.
linspace(a,b,n)

For example

```
x = linspace(0,5,6)
y = linspace(-1,1,5)
```

It generates a vector x of 6 points equally spaced between 0 and 5 . Similarly, y vector of 6 points is generated between -1 and 1.

Results

$x=$	0	1	2	3	4	5
$y=$	-1	-0.5	0	0.5	1	

- MATLAB math symbols
- i, j: Imaginary unit

For example

$$
A=1+2 i
$$

Results

$$
\mathrm{A}=1.0000+2.0000 i
$$

- Inf : Infinity

For example

$$
\begin{aligned}
& \mathrm{A}=\operatorname{Inf} * 20000000000 \\
& \mathrm{~B}=\operatorname{Inf} / 10000000000 \\
& \mathrm{C}=\operatorname{Inf}-\operatorname{Inf} \\
& \mathrm{D}=\operatorname{Inf} / \operatorname{Inf}
\end{aligned}
$$

Results

$$
\begin{aligned}
& \mathrm{A}=\operatorname{Inf} \\
& \mathrm{B}=\operatorname{Inf} \\
& \mathrm{C}=\mathrm{NaN} \\
& \mathrm{D}=\mathrm{NaN}
\end{aligned}
$$

- NaN: Not a Number

For example

$$
\begin{aligned}
& A=0 / 0 \\
& B=\operatorname{Inf} / \operatorname{Inf}
\end{aligned}
$$

Results

$$
\begin{aligned}
A & =\mathrm{NaN} \\
\mathrm{~B} & =\mathrm{NaN}
\end{aligned}
$$

- Pi, cosine, sine

For example

$$
\begin{aligned}
& \mathrm{A}=\mathrm{pi} \\
& \mathrm{~B}=\sin (\mathrm{pi}) \\
& \mathrm{C}=\cos (\mathrm{pi})
\end{aligned}
$$

Results

$$
\begin{aligned}
& A=3.1416 \\
& B=1.2246 e-016 \\
& C=-1
\end{aligned}
$$

