
Operating System

Chapter 4. Threads

Lynn Choi
School of Electrical Engineering

Process Characteristics
 Resource ownership

 Includes a virtual address space (process image)
 Ownership of resources including main memory, I/O devices, and files

− OS performs protection to prevent unwanted interferences among processes with
respect to resources

 Scheduling unit
 Process is the entity that is scheduled and dispatched by OS

− Has an execution state (Ready, Run) and schedule priority
− The execution path (trace) may be interleaved with those of other processes

 Two characteristics are independent

 The scheduling unit can be treated independently by OS
− In OS that supports threads, the scheduling unit is usually referred to as a thread

or lightweight process.
 The unit of resource ownership is referred to as a process or task

Multithreading
 Multithreading

 The ability of an OS to support multiple, concurrent paths of execution within
a single process
− Process is the unit of resource allocation and protection
− Thread is the unit of dispatching with the following state

 Thread execution state (Ready, Run)
 Thread context
 Thread execution stack

 Single-threaded approach
 Traditional approach of a single thread of execution per process
 No concept of thread

− Examples: MS-DOS, old UNIX

 Multi-threaded approach
 One process with multiple threads of execution

− Example: Java run-time environment
 Multiple processes with each of which supports multiple threads

− Examples: Windows, Solaris, modern UNIX

Single-threaded vs. Multithreaded Approaches

 Source: Pearson

Multithreaded Process Model
 Process has

 Virtual address space (process image on memory)
 Protected access to files, and I/O devices

 Each thread within a process has
 Thread control block

− Register values (PC, stack pointers)
− Thread state, priority, and other thread-related state information

 Execution stack (user stack, kernel stack)

 All the threads of a process
 Share the same address space and share the resources of that process

− When one thread alters the data item in memory, other threads see the results
when they access the item.

− If one thread opens a file with read privileges, other threads can also read from
that file.

Threads vs. Processes

 Source: Pearson

Multithreading
 Benefits of threads

 Less time to create a new thread in an existing process
− Thread creation is 10 times faster than process creation (Mach developers)

 Less time to terminate a thread
− You don’ t have to release I/O devices or memory

 Less time to switch between two threads
 Less time to communicate between two threads

− Communication between processes require the kernel intervention to provide
protection and communication (signal)

− Threads can communicate without kernel through shared memory

 In OS with multithreading, scheduling and execute state
is maintained at the thread-level, however some actions
affect all the threads in the process

− Suspending (swapping) a process involves suspending all the threads of the process
− Termination of a process involves terminating all the threads with the process

Multithreaded Applications
 File server

 A new thread can be spawned for each new file request
− Since a server handles many requests, many threads will be created/destroyed

 On a multiprocessor environment, multiple threads within the same process
can run simultaneously on different processors

 Faster to use threads to share files and coordinate their actions through
shared memory
− Processes/threads in a file server must share file data and coordinate actions

Multithreaded Applications
 Other examples in a single-user system

 Foreground and background jobs
− In a spreadsheet program, one thread can display menus and read user input

while another thread executes user commands and update the spreadsheet
 Increase the perceived speed of the application by prompting for the next

command before the previous command is complete
 Asynchronous processing

− In a word processor, a separate thread can perform periodic backup from RAM
buffer to disk
 No need for fancy code in the main program to provide for time checks or to

coordinate I/O
 Batch processing

− One thread may process a batch job while another is reading the next batch
 Even though one thread may be blocked for I/O, another thread may be

executing

Thread State
 Thread State

 Ready, Run, Blocked
 Suspended: do not make sense since it is process-level state

 Thread operations that affects the state
 Spawn

− When a new process is spawned, a thread for that process is also spawned
− A thread may spawn another thread within the same process

 Block
− When a thread needs to wait for an event, it will block (save its PC and registers)
− The processor may switch to another ready thread in the same or different process

 Unblock
− When the event occurs, the thread moves to the ready queue

 Finish
− When a thread completes, the register context and stacks are deallocated

RPC Using Single Thread

 2 RPCs to 2 hosts to
obtain a combined
result

 Single-threaded

program
 Each RPC has to wait

for a response from
each server sequentially Source: Pearson

RPC Using One Thread per Server

 Multi-

threaded
program

 Each RPC

request must
be generated
sequentially

 Each request
wait
concurrently
for the two
replies

 Source: Pearson

Interleaving of Multiple Threads
Within Multiple Processes

 3 threads of 2
processes are
interleaved on a
processor

 Thread switching
occurs when the
current thread is
blocked or its time
slice expires

 Source: Pearson

User-Level Threads (ULTs)
 All thread management

is done by the
application
 The threads library contains code

for creating and destroying
threads, scheduling thread
execution, saving and restoring
thread contexts, and passing
messages between threads

 The kernel is not aware
of the existence of
threads

 Source: Pearson

ULT States and Process States

 Source: Pearson

User-Level Threads
 Advantages

 Thread switching does not require kernel mode privileges (faster switching)
 Scheduling algorithm can be tailored to the application without disturbing OS

scheduler
 ULTs can run on any OS. No changes are required to the underlying kernel

 Disadvantages
 In a typical OS, many system calls are blocked

− As a result, when a ULT executes a system call, not only the thread is blocked,
but also all the other threads within the process are blocked.

 A multithreaded application cannot take advantage of multiprocessing
− A kernel assigns one process to only one processor. Therefore, only a single

thread can execute at a time

Kernel-Level Threads (KLTs)

 Thread management is done
by the kernel
 No thread management is done by the

application
− Simply an API to the kernel thread

facility
− Example: Windows

 Advantages

 The kernel can simultaneously
schedule multiple threads from the
same process on multiple processors

 If one thread is blocked, the kernel can
schedule another thread of the same
process

 Kernel routines can be multithreaded Source: Pearson

Disadvantage of KLTs

 Disadvantages
 Thread switching within the same process requires a mode switch to the

kernel
 More than an order of magnitude difference between ULTs and KLTs and

similarly between KLTs and processes

 Null Fork: create a new process/thread that invokes null procedure
 Signal Wait: signal a waiting process/thread and wait on a condition

 Source: Pearson

Combined Approach
 Thread creation is done

completely in the user space
 Multiple ULTs from a single

application are mapped onto the same
or smaller number of KLTs
− To achieve the best overall results,

the programmer adjust the number of
KLTs for a particular application

 Multiple threads within the same
process can run in parallel on multiple
processors
− A blocking system call need not

block the entire process
 If properly designed, can combine the

advantages of both ULT and KLT
approach while minimizing the
disadvantages.

 Example: Solaris

 Source: Pearson

Performance Impact of Multicores
 Amdahl’s law

 Speedup = time to execute a program on a single processor /
 time to execute the program on N processors
= 1 / ((1 – f) + f / N) where (1 – f) is an inherently serial fraction

 If 10% is inherently serial (f = 0.9)
− Speedup on 8 processors is only 4.7

 In real systems, overheads come from
− Communication, workload distribution,

and cache coherence

 Source: Pearson

Database Workloads on Multicores

Figure 4.8 Scaling of Database Workloads on Multiple Processor

 Software engineers have been
addressing this problem to
effectively exploit the
multicore
− Great attention was paid

to reduce the serial
fraction within HW, OS,
middleware, and DB
applications

 Source: Pearson

Applications for Multicores
 Multithreaded native applications

 Characterized by having a small number of highly threaded processes
 Lotus Domino, Siebel CRM

 Multiprocess applications
 Characterized by the presence of many single-threaded processes
 Oracle database, SAP

 Java applications
 Java language facilitate multithreaded applications
 Java Virtual Machine is also a multithreaded process that provides

scheduling and memory management for Java applications

 Multi-instance applications
 Can achieve speedup by running multiple instances of the same application

in parallel

Solaris
 Solaris provides four thread-related objects

 Process
− Normal UNIX process
− Includes user’s address space, stack, and process control block

 User-level thread (ULT)
− Implemented by a threads library at the application-level

 Lightweight process (LWP)
− Can be viewed as a mapping between ULTs and kernel threads
− Each LWP maps to one kernel thread
− LWPs are scheduled by the kernel independently and may execute in parallel on

multiprocessors
 Kernel thread

− These are fundamental entities that can be scheduled and dispatched to run on
any processors

− There are kernel threads that are not associated with LWPs
 The use of kernel threads to implement system functions reduces the

overhead of switching within the kernel (from a process switch to a thread
switch)

 Processes and Threads in Solaris

 Source: Pearson

Traditional Unix vs Solaris

 Source: Pearson

 Solaris Thread States

 Preemption by a higher
priority thread or due to time
slice

 SLEEP means blocked to wait
for an event

 STOP might be done for
debugging purpose

 FREE is awaiting removal
from OS thread data structure

 CPU pinning (or affinity
scheduling) fixes a thread to a
particular CPU to efficiently
run the thread (no cache
misses)
 PINNED thread cannot

move to another
processor until it is
UNPINNED

STOP ZOMBIE FREE

 Source: Pearson

Homework 3
 4.1
 4.3
 4.5
 4.7
 4.10
 Read Chapter 5

	Operating System��Chapter 4. Threads
	Process Characteristics
	Multithreading
	Single-threaded vs. Multithreaded Approaches
	Multithreaded Process Model
	Threads vs. Processes
	Multithreading
	Multithreaded Applications
	Multithreaded Applications
	Thread State
	RPC Using Single Thread
	RPC Using One Thread per Server
	Interleaving of Multiple Threads �Within Multiple Processes
	User-Level Threads (ULTs)
	ULT States and Process States
	User-Level Threads
	Kernel-Level Threads (KLTs)
	Disadvantage of KLTs
	Combined Approach
	Performance Impact of Multicores
	Database Workloads on Multicores
	Applications for Multicores
	Solaris
	 Processes and Threads in Solaris
	Traditional Unix vs Solaris
	 Solaris Thread States
	Homework 3

