
Operating System

Chapter 3. Process

Lynn Choi
School of Electrical Engineering

Process
 Def: A process is an instance of a program in execution.

 One of the most profound ideas in computer science.
 Not the same as “program” or “processor”

 Process provides two key abstractions:
 Logical control flow

− Each process has an exclusive use of the processor.
 Private address space

− Each process has an exclusive use of private memory.

 How are these Illusions maintained?
 Multiprogramming(multitasking): process executions are interleaved

− In reality, many other programs are running on the system.
− Processes take turns in using the processor

 Each time period that a process executes a portion of its flow is called a
time slice

 Virtual memory: OS provides a private space for each process
− The private space is called the virtual address space, which is a linear

array of bytes, addressed by n bit virtual address (0, 1, 2, 3, … 2n-1)

Private Address Spaces
 Each process has its own private address space.

kernel virtual memory
(code, data, heap, stack)

memory mapped region for
shared libraries

run-time heap
(managed by malloc)

user stack
(created at runtime)

unused 0

%esp (stack pointer)

memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

read/write segment
(.data, .bss)
read-only segment
(.init, .text, .rodata)

loaded from the
executable file

0xffffffff

 Source: Pearson

Life and Scope of an Object
 Life vs. scope

 Life of an object determines whether the object is still in memory (of the
process) whereas the scope of an object determines whether the object can
be accessed at this position

 It is possible that an object is live but not visible.
 It is not possible that an object is visible but not live.

 Local variables
 Variables defined inside a function
 The scope of these variables is only within this function
 The life of these variables ends when this function completes
 So when we call the function again, storage for variables is created and

values are reinitialized.
 Static local variables - If we want the value to be extent throughout the life of

a program, we can define the local variable as "static."
− Initialization is performed only at the first call and data is retained

between func calls.

Life and Scope of an Object
 Global variables

 Variables defined outside a function
 The scope of these variables is throughout the entire program
 The life of these variables ends when the program completes

 Static variables
 Static variables are local in scope to their module in which they are defined,

but life is throughout the program.
 Static local variables: static variables inside a function cannot be called from

outside the function (because it's not in scope) but is alive and exists in
memory.

 Static variables: if a static variable is defined in a global space (say at
beginning of file) then this variable will be accessible only in this file (file
scope)
− If you have a global variable and you are distributing your files as a

library and you want others not to access your global variable, you
may make it static by just prefixing keyword static

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused 0

%esp (stack pointer)

Memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded from the
executable file

Linux Run-time Memory Image

 Source: Pearson

Logical Control Flows

Time

Process A Process B Process C

Each process has its own logical control flow

Concurrent Processes
 Concurrent processes

 Two processes run concurrently (are concurrent) if their flows overlap in time.
 Otherwise, they are sequential.

 Examples:
 Concurrent: A & B, A & C
 Sequential: B & C

 Control flows for concurrent processes are physically disjoint in time.
 However, we can think of concurrent processes as logically running in

parallel with each other.

Time

Process A Process B Process C

Time

Process A Process B Process C

Context Switching
 Processes are managed by OS code called the kernel

 Important: the kernel is not a separate process, but rather runs as part of
some user process
− Processors typically provide this capability with a mode bit in some

control register

 User mode and kernel mode
 If the mode bit is set, the process is running in kernel mode (supervisor

mode), and can execute any instruction and can access any memory
location

 If the mode bit is not set, the process is running in user mode and is not
allowed to execute privileged instructions
− A process running application code is initially in user mode
− The only way to change from user mode to kernel mode is via an

exception and exception handler runs in kernel mode

Context Switching
 Context

 The kernel maintains a context for each process
− The context is the state of a process that the kernel needs to restart a

preempted process
− Consist of PC, general purpose registers, FP registers, status registers,

and various kernel data structures such as page table and file table

 Context switching
 The OS kernel implements multitasking using an exceptional control flow
 At certain points during the execution of a process, the kernel decide to

preempt the current process and restart a previously preempted process
− This is called scheduling and handled by code in the kernel called

scheduler (or dispatcher)
 Context switching

− The kernel first saves the context of the current process
− The kernel restores the context of some previously preempted process
− Then, the kernel passes control to this newly restored process

Context Switching

Process A
code

Process B
code

user code

kernel code

user code

kernel code

user code

Time
context switch

context switch

read

disk interrupt

return from
read

Process Control Block

 Process Control Block
 A data structure in the OS kernel that

contains the information needed to manage
a particular process

 Process ID, state, priority, pointer to register
save area, and status tables such as page
tables, file tables, IO tables, etc.

 Created and managed by the operating
system

 Source: Pearson

Process Execution and Traces

 Source: Pearson

Process Execution and Traces

Combined Traces of
Processes A, B, and C

 Source: Pearson

Two-State Process Model

 A process may be in one of two states:
 Running
 Not Running

 Source: Pearson

Queuing Diagram

 Source: Pearson

Process Creation and Termination

 Process spawning
 OS may create a process at the explicit request of another process

− A new process becomes a child process of the parent process

 Process termination
 A process may terminate itself by calling a system call called EXIT

− A batch job include a HALT instruction for termination
− For an interactive application, the action of the user will

indicate when the process is completed (e.g. log off, quitting
an application)

 A process may terminate due to an erroneous condition such as
memory unavailable, arithmetic error, or parent process termination,
etc.

fork: Creating new processes

 Process control
 Unix provides a number of system calls for manipulating processes
 Obtain Process ID, Create/Terminate Process, etc.

 int fork(void)
 Creates a new process (child process) that is identical to the calling process

(parent process)
 Returns 0 to the child process
 Returns child’s pid to the parent process

if (fork() == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

Fork is interesting
(and often confusing)
because it is called
once but returns twice

Fork Example #1

void fork1()
{
 int x = 1;
 pid_t pid = fork();
 if (pid == 0) {
 printf("Child has x = %d\n", ++x);
 } else {
 printf("Parent has x = %d\n", --x);
 }
 printf("Bye from process %d with x = %d\n", getpid(), x);
}

 Parent and child both run the same code
 Distinguish parent from child by return value from fork

 Duplicate but separate address space
 Start with same state, but each has private copy
 Relative ordering of their print statements undefined

 Shared files
 Both parent and child print their output on the same screen

Fork Example #2

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
}

 Both parent and child can continue forking
 Process graph

 Each horizontal arrow corresponds to a process
 Each vertical arrow corresponds to the execution of a fork function

L0 L1

L1

Bye

Bye

Bye

Bye

Fork Example #3

void fork3()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("L2\n");
 fork();
 printf("Bye\n");
}

 Key Points
 Both parent and child can continue forking

L1 L2

L2

Bye

Bye

Bye

Bye

L1 L2

L2

Bye

Bye

Bye

Bye

L0

Fork Example #4

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {
 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 fork();
 }
 }
 printf("Bye\n");
}

L0 L1

Bye

L2

Bye

Bye

Bye

Fork Example #5

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 fork();
 }
 }
 printf("Bye\n");
}

L0 Bye

L1

Bye

Bye

Bye

L2

exit: Destroying Process

 void exit(int status)
 Terminate a process with an exit status

− Normally with status 0
 atexit() registers functions to be executed upon exit

void cleanup(void) {
 printf("cleaning up\n");
}

void fork6() {
 atexit(cleanup);
 fork();
 exit(0);
}

Five-State Process Model

 Source: Pearson

Process States for Trace of Figure 3.4

Example

 Source: Pearson

Using Two Queues

 Source: Pearson

Multiple Blocked Queues

 Source: Pearson

Suspended Processes
 Swapping

 Involves moving part or all of a process from main memory to disk

 Suspended Process
 The process is not immediately available for execution
 The process was placed in a suspended state by an agent: either itself,

a parent process, or the OS, for the purpose of preventing its execution
 The process may or may not be waiting on an event

Suspend State

 Source: Pearson

Two Suspend States

 Source: Pearson

Processes and Resources

 Source: Pearson

Interrupt/Exception
 Interrupts

 Forced transfer of control to a procedure (handler) due to external events
(interrupt) or due to an erroneous condition (exception)

 Interrupt handling mechanism
 Should allow interrupts/exceptions to be handled transparently to the

executing process (application programs and operating system)
 Procedure

− When an interrupt is received or an exception condition is detected,
the current task is suspended and the control automatically transfers
to a handler

− After the handler is complete, the interrupted task resumes without
loss of continuity, unless recovery is not possible or the interrupt
causes the currently running task to be terminated.

(Synchronous) Exceptions

 Caused by an event that occurs as a result of executing
an instruction:

 Traps
 Intentional exceptions
 Examples: system calls, breakpoints (debug)
 Returns control to “next” instruction

 Faults
 Unintentional but possibly recoverable
 Examples: page faults (recoverable), protection faults (unrecoverable).
 Either re-executes faulting (“current”) instruction or terminate the process

 Aborts
 Unintentional and unrecoverable fatal errors
 Examples: parity error, machine check abort.
 Aborts the current process, and probably the entire system

 (Asynchronous) Interrupt

 Caused by an event external to the processor
 Indicated by setting the processor’s interrupt pins (#INT, #NMI)
 Handler returns to “next” instruction.

 Examples:
 I/O interrupts

− Hitting ctl-c at the keyboard, arrival of a packet from the network,
arrival of a data sector from a disk

 Hard reset interrupt: hitting the reset button
 Soft reset interrupt: hitting ctl-alt-delete on a PC

(2) Control passes
to handler after current
instruction finishes

(3) Interrupt
handler runs

(4) Handler
returns to
next instruction

Icurr
Inext

(1) Interrupt pin
goes high during
execution of
current instruction

(External) Interrupt

 Interrupt Classification
 Maskable interrupt

− Can be disabled/enabled by an instruction
− Generated by asserting INT pin
− External interrupt controllers

 Intel 8259 PIC (programmable interrupt controller) delivers the interrupt
vectors on the system bus during interrupt acknowledge cycle

 Non-maskable interrupt (NMI)
− Cannot be disabled by program
− Received on the processor’s NMI pin

UNIX Process States

 Source: Pearson

UNIX Process Context

 Source: Pearson

UNIX Process Table Entry

 Source: Pearson

Summary
 The most fundamental concept in a modern OS is the process
 The principal function of the OS is to create, manage, and terminate

processes
 Process control block contains all of the information that is required

for the OS to manage the process, including its current state,
resources allocated to it, priority, and other relevant data

 The most important states are Ready, Running and Blocked
 The running process is the one that is currently being executed by

the processor
 A blocked process is waiting for the completion of some event
 A running process is interrupted either by an interrupt or by

executing a supervisor call to the OS

Homework 2
 3.1
 3.3
 3.5
 3.7
 3.9
 Read Chapter 4

	Operating System��Chapter 3. Process
	Process
	Private Address Spaces
	Life and Scope of an Object
	Life and Scope of an Object
	Linux Run-time Memory Image
	Logical Control Flows
	Concurrent Processes
	Context Switching
	Context Switching
	Context Switching
	슬라이드 번호 12
	슬라이드 번호 13
	슬라이드 번호 14
	Two-State Process Model
	슬라이드 번호 16
	Process Creation and Termination
	fork: Creating new processes
	Fork Example #1
	Fork Example #2
	Fork Example #3
	Fork Example #4
	Fork Example #5
	exit: Destroying Process
	Five-State Process Model
	Process States for Trace of Figure 3.4
	Using Two Queues
	슬라이드 번호 28
	Suspended Processes
	Suspend State
	Two Suspend States
	Processes and Resources
	Interrupt/Exception
	(Synchronous) Exceptions
	 (Asynchronous) Interrupt
	(External) Interrupt
	UNIX Process States
	슬라이드 번호 38
	슬라이드 번호 39
	Summary
	Homework 2

