Chapter 1

Basic Concepts

1.1 Definitions

1.1.1 Vector

1. A vector is a quantity which has both direction and magnitude.

A.
1.1.2 Magnitude of a vector
1. The magnitude of a vector is defined by
|A| = A.
1.1.3 The unit vector
1. The unit vector is defined by
. A
a = Z

1.1.4 Vector addition

1. Vector addition satisfies commuatative law and associative law.

A+B=B+A.

A+(B+C)+(A+B)+C=A+B+C.

1.1.5 Additive identity

1. There is the addictive identity, 0, which call a null vector.

A+0=A
, for any A.
1.1.6 Addictive inverse
1. There is the addictive inverser —A.
A+(-A)=0

, for each A.

(1.2)

(1.4a)

(1.4b)

(1.5)

(1.6)
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1.1.7 Scalar multiplication

1. If a scalar a is multiplied to a vector A, the product also a vector.

ax A=daA. (1.7)

2. The scalar multiplication satisfies distributive law and associative law.

(a+b)A =aA+ DA, (1.8a)
a(A+ B) =aA + aB, (1.8b)
a(bA) = (ab)A = abA. (1.8¢)

1.1.8 Vector substraction
A—B=A+(—-B). (1.9)

1.1.9 Representation of vector

1. A vector can be expressed as a linear combination of basis vectors. For example, we can
express A of the form

3
A= Z A;é; (1.10)
n=1

, where €; are unit vectors of the three-dimensional orthogonal coordinate.

1.2 Scalar Product

1.2.1 Scalar Product

1. The scalar product of two vectors is defined by
A-B = ABcos# (1.11)
, where 6 is the angle between two vectors. Scalar product is commutative.

2. In the three-dimensional orthogonal coordinate system, the scalar product of two basis

vectors is

,where the Kronecker delta d;; is defined by

(1, ifi=,
5”_{0, otherwise. (1.13)

Therefore, in the above coordinate system, the scalar product of two vectors is

3 3 3
3,j=1 1,j=1 1,j=1

3. We have learened about the law of cosines.

C? = A% + B? — 2AB cos¥. (1.15)
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1.2.2 directional cosines

1. The vector A makes anglea with axes.

Ay = Acosa (1.16a)
Ay = Acosf (1.16b)
A, = Acosy (1.16¢)

, where cos, cosf3, cos-~ is called the directional cosines of A.

1.3 Vector Product - Cross Product

1.3.1 Vector product

1. The vector product of two vectors is defined by
A x B=nABsinf (1.17)
2. In the three-dimensional orthogonal coordinates, the vector product of two basis vector is
éi X éj = Eijkék:- (1.18)

, where ¢;;;, is called the Levi-Civita symbol.

1, if (i,7,k) = (1,2,3),(2,3,1),(3,1,2),
€ijk = _17 if (i,j, k) = (35271)7(2a1a3)7(1»372)7 (119)
0, otherwise.

3. In the three-dimensional orthogonal coordinates, the vector product of two vector is

3 3
(AxB)i= ) (Aj€;) x (Bpérx) = Y €ijuéiA;By (1.20)
Ji:k=1 gk=1
1.3.2 The law of sines
1. f A+ B+ C =0, A, B, C satisty following relations.
AxB=BxC=CxA, (1.21a)
sina  sinf  siny
=5 = ¢ (1.21b)
1.4 Triple Products
1.4.1 Triple scalar product
1. The triple scalar product of three vectors is defined by
A- (BxC)=A-BxC. (1.22)

2. In three-dimensional orthogonal coordinates system, the triple scalar product of three

vectors becomes
3

A-BxC = Z EijkAiBjCk- (1.23)
1,5,k=1
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1.4.2 Triple vector product

1. The triple vector product of three vectors is defined by
Ax (B xC) (1.24)
The triple vector product is same as
Ax(BxC)=B(A-C)-C(A-B,). (1.25)

We call this rule BAC-CAB rule.

1.5 Rotational Properties of a Vector

1.5.1 Position Vector

1. The position vector is defined by

3
=Y né (1.26)
=1

2. Let 2’ is a vector which has been transformed form x by rotation. Under the rotation, the
magnitude of x is cannot changed.
=22, (1.27)
1.5.2 Rotation Transfromation Coefficient

1. The rotation transformation coefficient R;; satisfy

3:; = Rij:cj. (1.28)
2. Then, we can verify eq. (1.28).
x? = af? (1.29)
(szxjx zkxk) (1'30)
(RZijk)(xz-Tk) (1.31)
(RURZk)azjwk (1.32)
Therefore,
RijR, = 6. (1.33)
1.5.3 Definition of vector

1. If a quantity A transforms like as

A=Y RijAj, (1.34)

we call A a vector.
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