Microprocessor Microarchitecture
Branch Prediction

Lynn Chol
School of Electrical Engineering

| @ MERGFIR Computer System Laboratory

Branch

a Branch Instruction distribution (% of dynamic instruction count)
» 24% of integer SPEC benchmarks
» 5% of FP SPEC benchmarks
» Among branch instructions
— 80% conditional branches

Q Issues
» In early pipelined architecture,

— Before fetching next instruction,
~ Branch target address has to be calculated
~ Branch condition need to be resolved for conditional branches

— Instruction fetch & issue stalls until the target address is determined,
resulting in pipeline bubbles

R RS Computer System Laboratory

Solution

a Resolve the branch as early as possible

a Branch Prediction

» Predict branch condition & branch target
» A simple solution

— PC <- PC + 4: implicitly prefetch the next sequential instruction assuming branch
IS not taken

» On a misprediction, the pipeline has to be flushed,

— Example

~ With 10% misprediction rate, 4-issue 5-stage pipeline will waste ~23% of
iIssue slots!

~ With 5% misprediction rate, 13% of issue slots will be wasted.
» Speculative execution

— Before branch is resolved, the instructions from the predicted path are fetched
and executed

» We need a more accurate prediction to reduce the misprediction penalty

— As pipelines become deeper and wider, the importance of branch misprediction
will increase substantially!

R RS Computer System Laboratory

Branch Misprediction Flush Example

1 LD R1 <- A
2 LD R2 <- B
3 MULT R3, R1, R2
A BEQ R1, R2, TARGET
5 SUB R3, R1, R4
6 ST A <- R3
7 TARGET ADD R4, R1, R2
FIDIRIE|E|W Branch Target is known
FID|R|E|E||lW /
FIDIRIR|E|E|E|E|W
FIDID|IR|E{W

Speculative execution:
These instructions will be flushed
on branch misprediction

FIDIRIEW

R RPIR Computer System Laboratory

Branch Prediction

Qa Branch condition prediction

» For conditional branches
» Branch Predictor - cache of execution history
» Predictions are made even before the branch is decoded

Q Branch target prediction

» Branch Target Buffer (BTB)

— Store target address for each branch

— Fall-through address is PC +4 for most branches

— Combined with branch condition prediction (2-bit saturating counter)
» Target Address Cache

— Stores target address for only taken branches

— Separate branch prediction tables
» Return stack buffer (RSB)

— Stores return address for procedure call

— Also called return address buffers (RAB)
R RS Computer System Laboratory

RSB Misprediction Rates versus Size

Misprediction frequency

R RFAR

70%

60%

50%

40% [

30%

20%

10%

0%

<~ go
-0~ m88ksim
- cci

-O- compress
-9 xlisp
& ijpeg
-A- perl
-@- vortex

Return address buffer entries

© 2007 Elsavier, Inc. All rights resarved.

.......

Computer System Laboratory

Branch Target Buffer

Q For BTB to make a correct prediction, we need
» BTB hit: the branch instruction should be in the BTB
» Prediction hit: the prediction should be correct
» Target match: the target address must not be changed from the last time

d Example: BTB hit ratio of 96%, 97% prediction hit, 1.2% of target change,
The overall prediction accuracy = 0.96 * 0.97 *0.988 = 92%

Q Implementation: Accessed with VA and need to be flushed on context switch

Branch Instruction | Branch Prediction| Branch Target
Address Statistics Address

R RS Computer System Laboratory

Branch Target Buffer

A Should we store target address for both taken and not-taken
branches?

a How about storing instructions rather than target addresses?

Q Branch folding

» Store one or more target instructions instead of, or in addition to the
predicted target address

» Advantages

— On a BTB hit and if the branch is unconditional, the pipeline can
substitute the instruction from the BTB in place of the instruction from
the cache

— For highly predictable conditional branches, you can do the same

— This allows 0-cycle unconditional branches and sometimes 0-cycle
conditional branches

— Or, it allows BTB access to take longer than the time between successive
Instruction fetches, allowing a larger BTB

R RS Computer System Laboratory

Static Branch Prediction

a Assume all branches are taken
» 60% of conditional branches are taken

a Opcode information
» Backward Taken and Forward Not-taken scheme
— Quite effective for loop-bound programs
— Miss once for all iterations of a loop
— Does not work for irregular branches
— 69% prediction hit rate

Q Profiling

» Measure the tendencies of the branches and preset a static prediction bit in
the opcode

» Sample data sets may have different branch tendencies than the actual data
sets

» 92.5% hit rate

Q Static predictions are used as safety nets when the dynamic
prediction structures need to be warmed up

R RS Computer System Laboratory

Dynamic Branch Prediction

a Dynamic schemes- use runtime execution history
» LT (last-time) prediction - 1 bit, 89%
» Bimodal predictors - 2 bit
— 2-bit saturating up-down counters (Jim Smith), 93%
— Several different state transition implementations
— Branch Target Buffer(BTB)
» Static training scheme (A. J. Smith), 92 ~ 96%

— Use both profiling and runtime execution history
~ Statistics collected from a pre-run of the program

~ A history pattern consisting of the last n runtime execution results of
the branch

» Two-level adaptive training (Yeh & Patt), 97%
— First level, branch history register (BHR)
— Second level, pattern history table (PHT)

R RS Computer System Laboratory

Bimodal Predictor

S(I): State at time |

G(S(1)) -> T/F: Prediction decision function

E(S(1), T/N) -> S(1+1): State transition function

Performance: A2 (usually best), A3, A4 followed by Al followed by LT

IEEE All rights reserved

R RPIR Computer System Laboratory

Bimodal Predictor Structure

2b counter arrays

\ 4

11 pP— Predict taken

A simple array of counters (without
tags) often has better performance
PC for a given predictor size

R RBAX Computer System Laboratory

Two-level adaptive predictor

a Motivated by

» Two-bit saturating up-down counter of BTB (J. Smith)
» Static training scheme (A. Smith)
— Profiling + history pattern of last k occurences of a branch

a Organization

» Branch history register (BHR) table
— Indexed by instruction address (Bi)

— Branch history of last k branches

~ Local predictor: The last k occurrences of the same branch (Ri,c-kRi,c-
k+1....Ric-1)

~ Global predictor: The last k branches encountered
— Implemented by k-bit shift register
» Pattern history table (PT)
— Indexed by a history pattern of last k branches
— Prediction function z = A(Sc)

+~ Prediction is based on the branch behavior for the last s occurrences of the
pattern

— State transition function Sc+1 = 8(Sc, Ric)
~ 2b saturating up-down counter

R RS Computer System Laboratory

Structure of 2-level adaptive predictor

Pattern History Table (PHT)

Branch History Register (BHRJ 00......00
(Shift Jeft when update) 0......01

Re:BanchRemitof B = Logicford

IEEE All rights reserved

R RS Computer System Laboratory

Global vs. Local History

a Global history schemes

» The last k conditional branches encountered

» Works well when the direction taken by sequentially executed branches is
highly correlated

— EX) if (x >1) then .. If (x<=1) then ..
» These are also called correlating predictors

Aa Local history schemes
» The last k occurrences of the same branch
» Works well for branches with simple repetitive patterns
» Two types of contention

— Branch history may reflect a mix of histories of all the branches that map to the
same history entry

— With 3 bits of history, cannot distinguish patterns of 0110 and 1110

~ However, if the first pattern is executed many times then followed by the
second pattern many times, the counters can dynamically adjust

R RS Computer System Laboratory

LLocal History Structure

History Counts

v

110

11 p— Predict taken

PC

R RBAX Computer System Laboratory

Global History Structure

2b counter arrays

11 » Predict taken

GHR

R RBAX Computer System Laboratory

Global/Local/Bimodal Performance

08
o7
96
95
94
93

91
90

Conditional Branc_:h Prediction Accuracy (%)

89
88

R RS

92

b

i 1: o—OQIObal -
. e + local N
L A— — A bimodal

32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K

- Predictor Size (bytes)
- IEEEAllrights-reserved . p o o g = GERTE e,

Computer System Laboratory

Global Predictors with Index Sharing

Qa Global predictor with index selection (gselect)

» Counter array is indexed with a concatenation of global history and branch
address bits

» For small sizes, gselect parallels bimodal prediction
» Once there are enough address bits to identify most branches, more global
history bits can be used, resulting in much better performance than global
predictor
Q Global predictor with index sharing (gshare)

» Counter array is indexed with a hashing (XOR) of the branch address and
global history

— Eliminate redundancy in the counter index used by gselect

R RS Computer System Laboratory

Gshare vs. Gselect

Branch Global Gselect Gshare
Address History 4/4 8/8
00000000 00000001 00000001 00000001
00000000 00000000 00000000 00000000
11111111 00000000 11110000 11111111
11111111 10000000 11110000 01111111

R RS

Computer System Laboratory

Gshare/Gselect Structure

gshare

GHR

AU,

. XOR M 11 » Predict taken

/-

PC

v
gselect

R RPIR Computer System Laboratory

s |
o7l
96 |-
95 |-

92 [-
o1k ‘
90 {/
ot

il

)
e
>
Q
g .
g
<
c
e
°
O
@
e 7
(2 T
£
Q
c
©
@
©
c
9
=
o
Q
O

TR TR R (N R R B

.. 0——10 gselect-best

X gshare-best

O global

32 »64 128 256 512 1K 2K 4K 8K
1EEE Al rights,feserved | -

R RS

16K 32K 64K

Predictor Size (bytes)

Computer System Laboratory

Combined Predictor Structure

Counts
| Pic-P2¢ —| | useP1

Plc | P2¢ | Plc-P2c

0 0 0 {no change)

0 1 -1 { decrement counter) . |

| 0 1 { increment counter) 1 1 = P1 | P2
1 I 0 (no change) | - A

PC

IEEE All rights reserved »

Q These are also called tournament predictors
» Adaptively combine global and local predictors

R RBAX Computer System Laboratory

Combined Predictor Performance

bimodal
mmmmms gshare
mmmmm bimodal/gshare
doduc e e S e
egntott
espress

fpppp

l l 'ats O O B R A N S A B

nasa7
spice

t O l I Icatv AR R R 7R 7 R Y R P SOOI S P ey R P A RIS oY R T o i B E 2 B A S R B O L R AN R PR B P N B0

average

80 82 84 86 88 90 92 94 96 98 100
Conditional Branch Prediction Accuracy (%)

IEEE All rights reserved

R RPIR Computer System Laboratory

Exercises and Discussion

Q Intel’s Xscale processor uses bimodal predictor? What state
would you initialize?

a Y/N Questions. Explain why.
» Branch prediction is more important for FP applications. (Y/N) Why or Why
not?
» Branch prediction is more difficult for conditional branches than indirect
branches. (Y/N) Why or Why not?
» To predict branch targets, an instruction must be decoded first. (Y/N) Why or
Why not?
RSB stores target address of call instructions. (Y/N) Why or Why not?

At the beginning of program execution, static branch prediction is more
effective than dynamic branch prediction (Y/N) Why or Why not?

\ 2 4

R RS Computer System Laboratory

