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Branch 

 Branch Instruction distribution (% of dynamic instruction count) 

 24% of integer SPEC benchmarks 

 5% of FP SPEC benchmarks 

 Among branch instructions 

 80% conditional branches 

 Issues 

 In early pipelined architecture,  

 Before fetching next instruction, 

 Branch target address has to be calculated 

 Branch condition need to be resolved for conditional branches 

 Instruction fetch & issue stalls until the target address is determined, 

resulting in pipeline bubbles 

 

 

 



Solution 

 Resolve the branch as early as possible 

 Branch Prediction 

 Predict branch condition & branch target 

 A simple solution 

 PC <- PC + 4: implicitly prefetch the next sequential instruction assuming branch 

is not taken 

 On a misprediction, the pipeline has to be flushed, 

 Example 

 With 10% misprediction rate, 4-issue 5-stage pipeline will waste ~23% of 

issue slots! 

 With 5% misprediction rate, 13% of issue slots will be wasted. 

 Speculative execution  

 Before branch is resolved, the instructions from the predicted path are fetched 

and executed 

 We need a more accurate prediction to reduce the misprediction penalty 

 As pipelines become deeper and wider, the importance of branch misprediction 

will increase substantially! 

 



Branch Misprediction Flush Example 

1                      LD R1 <- A 

2                      LD R2 <- B 

3                      MULT R3, R1, R2 

4                      BEQ R1, R2, TARGET 

5                      SUB R3, R1, R4 

6                  ST A <- R3 

7 TARGET: ADD R4, R1, R2 
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Speculative execution: 

These instructions will be flushed 

on branch misprediction 



Branch Prediction 

 Branch condition prediction 
 For conditional branches  

 Branch Predictor - cache of execution history 

 Predictions are made even before the branch is decoded 

 Branch target prediction 
 Branch Target Buffer (BTB) 

 Store target address for each branch 

 Fall-through address is PC +4 for most branches 

 Combined with branch condition prediction (2-bit saturating counter) 

 Target Address Cache 

 Stores target address for only taken branches 

 Separate branch prediction tables 

 Return stack buffer (RSB) 

 Stores return address for procedure call 

 Also called return address buffers (RAB) 

 



RSB Misprediction Rates versus Size 
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 For BTB to make a correct prediction, we need 

 BTB hit: the branch instruction should be in the BTB  

 Prediction hit: the prediction should be correct 

 Target match: the target address must not be changed from the last time 

 Example: BTB hit ratio of 96%, 97% prediction hit, 1.2% of target change, 

The overall prediction accuracy = 0.96 * 0.97 *0.988 = 92% 

 Implementation: Accessed with VA and need to be flushed on context switch 



Branch Target Buffer 

 Should we store target address for both taken and not-taken 

branches? 

 How about storing instructions rather than target addresses? 

 Branch folding 

 Store one or more target instructions instead of, or in addition to the 

predicted target address 

 Advantages 

 On a BTB hit and if the branch is unconditional, the pipeline can 

substitute the instruction from the BTB in place of the instruction from 

the cache 

 For highly predictable conditional branches, you can do the same 

 This allows 0-cycle unconditional branches and sometimes 0-cycle 

conditional branches 

 Or, it allows BTB access to take longer than the time between successive 

instruction fetches, allowing a larger BTB 



Static Branch Prediction 

 Assume all branches are taken  
 60% of conditional branches are taken 

 Opcode information 
  Backward Taken and Forward Not-taken scheme 

 Quite effective for loop-bound programs 

 Miss once for all iterations of a loop 

 Does not work for irregular branches 

 69% prediction hit rate 

 Profiling 
 Measure the tendencies of the branches and preset a static prediction bit in 

the opcode 

 Sample data sets may have different branch tendencies than the actual data 
sets 

 92.5% hit rate 

 Static predictions are used as safety nets when the dynamic 
prediction structures need to be warmed up 

 



Dynamic Branch Prediction 

 Dynamic schemes- use runtime execution history 
 LT (last-time) prediction - 1 bit, 89% 

 Bimodal predictors - 2 bit 

 2-bit saturating up-down counters (Jim Smith), 93% 

 Several different state transition implementations 

 Branch Target Buffer(BTB) 

 Static training scheme (A. J. Smith), 92 ~ 96% 

 Use both profiling and runtime execution history 

 Statistics collected from a pre-run of the program 

 A history pattern consisting of the last n runtime execution results of 

the branch 

 Two-level adaptive training (Yeh & Patt), 97% 

 First level, branch history register (BHR) 

 Second level, pattern history table (PHT) 

 



Bimodal Predictor 

S(I): State at time I 

G(S(I)) -> T/F: Prediction decision function 

E(S(I), T/N) -> S(I+1): State transition function 

Performance: A2 (usually best), A3, A4 followed by A1 followed by LT 
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Bimodal Predictor Structure 

PC 

2b counter arrays 

11 Predict taken 

A simple array of counters (without  

tags) often  has better performance  

for a given predictor size 



Two-level adaptive predictor 

 Motivated by 
 Two-bit saturating up-down counter of BTB (J. Smith) 

 Static training scheme (A. Smith) 

 Profiling + history pattern of last k occurences of a branch 

 Organization 
 Branch history register (BHR) table 

 Indexed by instruction address (Bi) 

 Branch history of last k branches 

 Local predictor: The last k occurrences of the same branch (Ri,c-kRi,c-

k+1….Ri,c-1) 

 Global predictor: The last k branches encountered 

 Implemented by k-bit shift register 

 Pattern history table (PT) 

 Indexed by a history pattern of last k branches 

 Prediction function z = (Sc) 

 Prediction is based on the branch behavior for the last s occurrences of the 
pattern 

 State transition function Sc+1 = (Sc, Ri,c) 

 2b saturating up-down counter 

 



Structure of 2-level adaptive predictor 
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Global vs. Local History 

 Global history schemes 

 The last k conditional branches encountered 

 Works well when the direction taken by sequentially executed branches is 

highly correlated 

 EX) if (x >1) then .. If (x<=1) then .. 

 These are also called correlating predictors 

 Local history schemes 

 The last k occurrences of the same branch 

 Works well for branches with simple repetitive patterns 

 Two types of contention 

 Branch history may reflect a mix of histories of all the branches that map to the 

same history entry 

 With 3 bits of history, cannot distinguish patterns of 0110 and 1110 

 However, if the first pattern is executed many times then followed by the 

second pattern many times, the counters can dynamically adjust 

 



Local History Structure 

PC 

Counts 

11 Predict taken 

110 

History 



Global History Structure 

GHR 

2b counter arrays 

11 Predict taken 



Global/Local/Bimodal Performance 
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Global Predictors with Index Sharing 

 Global predictor with index selection (gselect) 

 Counter array is indexed with a concatenation of global history and branch 

address bits 

 For small sizes, gselect parallels bimodal prediction 

 Once there are enough address bits to identify most branches, more global 

history bits can be used, resulting in much better performance than global 

predictor 

 Global predictor with index sharing (gshare) 

 Counter array is indexed with a hashing (XOR) of the branch address and 

global history 

 Eliminate redundancy in the counter index used by gselect 



Gshare vs. Gselect 

Branch

Address

Global

History

Gselect

4/4

Gshare

8/8

00000000 00000001 00000001 00000001

00000000 00000000 00000000 00000000

11111111 00000000 11110000 11111111

11111111 10000000 11110000 01111111



Gshare/Gselect Structure 
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Global History with Index Sharing Performance 
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Combined Predictor Structure 

 

 These are also called tournament predictors 

 Adaptively combine global and local predictors 
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Combined Predictor Performance 
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Exercises and Discussion 

 Intel’s Xscale processor uses bimodal predictor? What state 

would you initialize? 

 Y/N Questions. Explain why.  

 Branch prediction is more important for FP applications. (Y/N) Why or Why 

not? 

 Branch prediction is more difficult for conditional branches than indirect 

branches. (Y/N) Why or Why not? 

 To predict branch targets, an instruction must be decoded first. (Y/N) Why or 

Why not? 

 RSB stores target address of call instructions. (Y/N) Why or Why not? 

 At the beginning of program execution, static branch prediction is more 

effective than dynamic branch prediction (Y/N) Why or Why not? 


