Microprocessor Microarchitecture
 The Past，Present，and Future of CPU Architecture

Lynn Choi
School of Electrical Engineering

Contents

\square Performance of Microprocessors
－Past：ILP Saturation
＞I．Superscalar Hardware Complexity
＞II．Limits of ILP
＞III．Power Inefficiency
－Present：TLP Era
＞I．Multithreading
＞II．Multicore
－Present：Today＇s Microprocessor
＞Intel Core 2 Quad，Sun Niagara II，and ARM Cortex A－9 MPCore
－Future：Looking into the Future
＞I．Manycores
＞II．Multiple Systems on Chip
＞III．Trend－Change of Wisdoms

CPU Performance

$\square \mathrm{T}_{\text {exe }}$（Execution time per program）
$=N I * \boldsymbol{C P I}_{\text {execution }} * \boldsymbol{T}_{\text {cycle }}$
＞ $\mathrm{NI}=$ \＃of instructions／program（program size）
$>\mathrm{CPI}=$ clock cycles／instruction
$>\mathrm{T}_{\text {cycle }}=$ second $/$ clock cycle（clock cycle time）
\square To increase performance
＞Decrease NI （or program size）
－Instruction set architecture（CISC vs．RISC），compilers
＞Decrease CPI（or increase IPC）
－Instruction－level parallelism（Superscalar，VLIW）
＞Decrease $\mathrm{T}_{\text {cycle }}$（or increase clock speed）
－Pipelining，process technology

Advances in Intel Microprocessors

81.3 （projected）

Pentium IV 2．8GHz
（superscalar，out－of－order

4
45.2 （projected）

Pentium IV 1.7 GHz

Microprocessor Performance Curve

ILP Saturation I－Hardware Complexity

Figure 1：Baseline superscalar model．
－Superscalar hardware is not scalable in terms of issue width！
＞Limited instruction fetch bandwidth
$>$ Renaming complexity \propto issue width ${ }^{2}$
$>$ Wakeup \＆selection logic \propto instruction window ${ }^{2}$
$>$ Bypass logic complexity \propto \＃of FUs ${ }^{2}$
＞Also，on－chip wire delays，\＃register and memory access ports，etc．
－Higher IPC implies lowering the Clock Speed！

ILP Saturation II－Limits of ILP

ILP Saturation III－Power Inefficiency

\square Increasing issue rate is not energy efficient

－Increasing clock rate is also not energy efficient
＞Increasing clock rate will increase transistor switching frequency
＞Faster clock needs deeper pipeline，but the pipelining overhead grows faster
－Existing processors already reach the power limit
＞ 1.6 GHz Itanium 2 consumes 130 W of power！
＞Temperature problem－Pentium power density passes that of a hot plate （＇98）and would pass a nuclear reactor in 2005，and a rocket nozzle in 2010.
－Higher IPC and higher clock speed have been pushed to their limit！

TLP Era I－Multithreading

－Multithreading

＞Interleave multiple independent threads into the pipeline every cycle
－Each thread has its own PC，RF，branch prediction structures but shares instruction pipelines and backend execution units
＞Increase resource utilization \＆throughput for multiple－issue processors
－Improve total system throughput（IPC）at the expense of compromised single program performance

（b）Fine－Grain Multithreading

IEEE All rights reserved

TLP Era I－Multithreading

－IBM 8－processor Power 5 with SMT（2 threads per core）
$>$ Run two copies of an application in SMT mode versus single－thread mode
＞ 23% improvement in SPECintRate and 16% improvement in SPECfpRate

TLP Era II－Multicore

aMulticore

＞Single－chip multiprocessing
＞Easy to design and verify functionally
＞Excellent performance／watt
$-\mathbf{P}_{\text {dyn }}=\alpha \mathrm{C}_{\mathrm{L}} * \mathbf{V}_{\mathrm{DD}}{ }^{2} * \mathbf{F}$
－Dual core at half clock speed can achieve the same performane （throughput）but with only $1 / 4$ of the power consumption ！

- Dual core consumes $2 * \mathrm{C} * 0.5^{2} \mathrm{~V} * 0.5 \mathrm{~F}=0.25 \mathrm{CV}^{2} \mathrm{~F}$
＞Packaging，cooling，reliability
－Power also determines the cost of packaging／cooling．
－Chip temperature must be limited to avoid reliability issue and leakage power dissipation．
＞Improved throughput with minor degradation in single program performance
－For multiprogramming workloads and multi－threaded applications

Today＇s Microprocessor

\square Intel Core 2 Quad Processor（code name＂Yorkfield＂）

＞Technology
－ 45 nm process， 820 M transistors， $2 \times 107 \mathrm{~mm}^{2}$ dies
－ 2.83 GHz ，two 64－bit dual－core dies in one MCM package
＞Core microarchitecture
－Next generation multi－core microarchitecture introduced in Q1 2006
－Derived from P6 microarchitecture
－Optimized for multi－cores and lower power consumption
－Lower clock speeds for lower power but higher performance
－ $1 / 2$ power（up to 65W）but more performance compared to dual－ core Pentium D
－14－stage 4－issue out－of－order（OOO）pipeline
－64bit Intel architecture（x86－64）
＞ 2 unified 6MB L2 Caches
＞ 1333 MHz system bus

Today＇s Microprocessor

－Sun UltraSPARC T2 processor（＂Niagara II＂）

＞Multithreaded multicore technology
－Eight 1．4 GHz cores， 8 threads per core \rightarrow total 64 threads
－ 65 nm process， 1831 pin BGA， 503 M transistors， 84 W power consumption
＞Core microarchitecture
－Two issue 8－stage instruction pipelines \＆pipelined FPU per core
＞4MB L2－ 8 banks， 64 FB DIMMs，60＋GB／s memory bandwidth
＞Security coprocessor per core and dual 10GB Ethernet，PCI Express
＂Victoria Falls＂

Performance increase

Today＇s Microprocessor

－Cortex A－9 MPCore
＞ARMv7 ISA
＞Support complex OS and multiuser applications
＞2－issue superscalar 8－ stage OOO pipeline
＞FPU supports both SP and DP operations
＞NEON SIMD media processing engine
＞MPCore technology that can support $1 \sim 4$ cores

Future CPU Microarchitecture－MANYCORE

Future CPU Microarchitecture－MANYCORE

a Architecture

＞Core architecture
－Should be the most efficient in MIPS／watt and MIPS／silicon．
－Modestly pipelined（8～14 stages）in－order pipeline

CPU	DSP	GPU
CPU	DSP	GPU
CPU	DSP	GPU

－Heterogeneous in terms of performance
－Amdahl＇s Law
－Shared vs．distributed memory MP
－Shared memory multicore
－Most of existing multicores

－Preserve the programming paradigm via binary compatibility and cache coherence
－Distributed memory multicores
－More scalable hardware and suitable for manycore architectures

Future CPU Microarchitecture I－MANYCORE唯

\square Issues
＞On－chip interconnects
－Buses and crossbar will not be scalable to 1000 cores！
－Packet－switched point－to－point interconnects
－Ring（IBM Cell），2D／3D mesh／torus（RAW）networks
－Can provide scalable bandwidth．But，how about latency？
＞Cache coherence
－Bus－based snooping protocols cannot be used！
－Directory－based protocols for up to 100 cores
－More simplified and flexible coherence protocols will be needed to leverage the improved bandwidth and low latency．
－Caches can be adapted between private and shared configurations．
－More direct control over the memory hierarchy．Or，software－managed caches
＞Off－chip pin bandwidth
－Manycores will unleash a much higher numbers of MIPS in a single chip．
－More demand on IO pin bandwidth
－Need to achieve 100 GB／s～1TB／s memory bandwidth
－More demand on DRAM out of total system silicon

Future CPU Microarchitecture I－MANYCORE畣

－Projection

＞Pin IO bandwidth cannot sustain the memory demands of manycores
＞Multicores may work from 2 to 8 processors on a chip
＞Diminishing returns as 16 or 32 processors are realized！
－Just as returns fell with ILP beyond 4～6 issue now available
＞But for applications with high TLP，manycore will be a good design choice
－Network processors，Intel＇s RMS（Recognition，Mining，Synthesis）

Future CPU Architecture II－Multiple SoC

－Idea－System on Chip！
＞Integrate main memory on chip
＞Much higher memory bandwidth and reduced memory access latencies
\square Memory hierarchy issue
＞For memory expansion，off－chip DRAMs may need to be provided
－This implies multiple levels of DRAM in the memory hierarchy
－On－chip DRAMs can be used as a cache for the off－chip DRAM
＞On－chip memory is divided into SRAMs and DRAMs
－Should we use SRAMs for caches？
\square Multiple systems on chip
＞Single monolithic DRAM shared by multiple cores
＞Distributed DRAM blocks across multiple cores

Intel Terascale processor

\square Features

＞ 803.13 GHz processor cores，1．01 TFLOPS at $1.0 \mathrm{~V}, 62 \mathrm{~W}, 100 \mathrm{M}$ transistors
＞3D stacked memory
＞Mesh interconnects－provides 80GB／s bandwidth

\square Challenges

＞On－die power dissipation
＞Off－chip memory bandwidth
＞Cache hierarchy design and coherence

Example Mesh \square

The key technologies of this first Tera－scale Research Prototype are a mesh interconnect（left）and support for 3D stacked memory（above）．

Intel Terascale processor

Trend－Change of Wisdoms

－1．Power is free，but transistors are expensive．
＞＂Power wall＂：Power is expensive，but transistors are＂free＂．
\square 2．Regarding power，the only concern is dynamic power．
＞For desktops／servers，static power due to leakage can be 40% of total power．
－3．Can reveal more ILP via compilers／arch innovation．
＞＂ILP wall＂：There are diminishing returns on finding more ILP．
－4．Multiply is slow，but load and store is fast．
＞＂Memory wall＂：Load and store is slow，but multiply is fast． 200 clocks to access DRAM，but FP multiplies may take only 4 clock cycles．
－5．Uniprocessor performance doubles every 18 months．
＞Power Wall＋Memory Wall＋ILP Wall：The doubling of uniprocessor performance may now take 5 years．
－6．Don＇t bother parallelizing your application，as you can just wait and run it on a faster sequential computer．
＞It will be a very long wait for a faster sequential computer．
\square 7．Increasing clock frequency is the primary method of improving processor performance．
＞Increasing parallelism is the primary method of improving processor performance．

