Linear Stability Analysis (II)

For a Predator-Prey Model



Introduction

 For linear stability analysis, we assume that the
amplitude of initial condition is sufficiently small (but
not too small either).

« If the solution converges to specific value as both time
step size and space step size go to zero, the scheme is
convincing.

 Otherwise, i.e. if an oscillation is observed, the scheme
Is unbelievable.



Linearization

« For linear stability analysis, we start the linearization of
our PDE by using the Taylor expansion with simple
example as below :

c=c—c +e?Ac

« For the linearization at ¢=0, we just omit the nonlinear
term :

c; = c+ 2 Ac

« We will use this one; however, we also find the
linearization at the non-zero point for generalization.



Linearization

« In general case, i.e. the linearization at ¢ = a which is
not zero, we first take f(c) = ¢ — 3.

« Then, the Taylor expansion of f(c) is
1

f(e) = f(a) + (¢ = a)f'(a) + 5(c = a)’f"(€)

~a—a’+ (c—a)(l - 3a?)

 So, our PDE becomes

¢t =a—a+ (c—a)(l - 3a*) + eAc



Stability Analysis
e Let ¢ = a(t)cos(kmx)

« Plugging this in linearized one, then we get

d(t) = [1 — (ekm)?] a(t)

« The assumption is originated from the Fourier series
form. We use exponential function generally, however,
the cosine function is used for the Neumann boundary
condition.

c(xz,t) = Z ar(t)e'™ ™ = Z ax(t) [cos(kmx) + i sin(kmx)]
k=0 k=0 —0



Stability Analysis

« Now, we compare two equations: one is for numerical
simulation and the other is for linear stability analysis
(LSA).

« Since LSA is derived from the Taylor expansion, they
are same at very short time duration.

e From a(t):a(O)e’\t,

a/(t) A\t
| =1 =\t
og a(O) oge

So, we can get A.



Example

« For more practical example, we refer

"An Efficient and Accurate Numerical Scheme for Turing Instability on a
Predator-Prey Model”, Ana Yun, Darae Jeong, Junseok Kim (2011)

 In this paper, the system of partial differential
equations is given as

aNP

Ne=N(1-N)= 5%

+ lexa;

eP(v+ 03P) eNP
18P ' PFrNT®

It is a model of predator-prey simulation.



Example

« N and P are the prey and predator population
densities, respectively.

 di's and greek alphabets are given coefficients.

e |Let

alN P
_ eP(v+48P) eNP
g\N, P)=——"735 P+N

and N* and P* are equilibrium points for f and g,
respectively.



Example
« Now, we use the Taylor's expansion for two variables
to both N and P at (N*, P¥).

N; = f(N*, P*) 4+ fn(N*, P*)(N — Nx) + fp(N*, P*)(P — P*) + d1 Nug

Py = g(N*, P*) + gn(N*, P*)(N — Nx) 4+ gp(N*, P*)(P — P*) + do Pya
« For simplicity, we let

N = N" + a(t) cos(kmx)

P = P* +b(t) cos(kmz)

and plug these in above equation.



Example

« Then, we get

a'(t) cos(kmx) = fF(N*, P*) + fnv(N™, P*)(a(t) cos(knx))
+fo(N*, P*)(b(t) cos(kmx)) — (kn)°dia(t) cos(knx)

b (t) cos(kmx) = g(N*, P*) + gn(IN*, P*)(a(t) cos(kmz))
+g,(N*, P*)(b(t) cos(knzx)) — (km)°dab(t) cos(kmx)

It can be solved by matrix decomposition as below:
(The results can be shown in the paper)

X' =AX - X'=PDP'X - (P 'X) =D(P'X)

where D is diagonal matrix.



