
Operating System

Chapter 11. I/O Management and
 Disk Scheduling

Lynn Choi
School of Electrical Engineering

Categories of I/O Devices

 I/O devices can be grouped into 3 categories
 Human readable devices

− Suitable for communicating with the computer user
− Printers, terminals, video display, keyboard, mouse

 Machine readable devices
− Suitable for communicating with electronic equipment
− Disk drives, USB devices, sensors, controllers

 Communication devices
− Suitable for communicating with remote devices
− Modems, digital line drivers

Data Rates

 Source: Pearson

Organization of I/O Function
 Three techniques for performing I/O are
 Programmed I/O

 The processor issues an I/O command on behalf of a process to an I/O
module; that process then busy waits for the operation to be completed
before proceeding

 Interrupt-driven I/O
 The processor issues an I/O command on behalf of a process

− If non-blocking – processor continues to execute instructions from the process
that issued the I/O command

− If blocking – the next instruction the processor executes is from the OS, which
will put the current process in a blocked state and schedule another process

 Direct Memory Access (DMA)
 The processor sends a request for a block transfer to the DMA module, which

then controls the exchange of data between main memory and an I/O
module. After the transfer, the DMA module interrupts the processor.

Techniques for Performing I/O

 Source: Pearson

Evolution of I/O Function
 Processor directly controls a peripheral device
 Programmed I/O without interrupt

 An I/O controller or I/O module is added

 Programmed I/O with interrupt
 Same configuration as step 2, but now interrupts are employed

 DMA
 The I/O module is given direct control of memory via DMA

 I/O channel
 The I/O module is enhanced to become a separate processor, with a

specialized instruction set tailored for I/O

 I/O processor
 The I/O module has a local memory of its own and is, in fact, a computer in

its own right

DMA Block Diagram
 Processor issues a

command to DMA
module with the following
information
 Read or Write
 The address of IO device
 The starting address of

memory
 The number of words to

transfer

 DMA module transfers
the entire block and after
completion, it interrupts
the processor

 Source: Pearson

DMA Alternative Configurations

 Source: Pearson

Design Objectives

 Efficiency
 Major effort in I/O design
 Important because I/O operations often form a bottleneck
 Most I/O devices are extremely slow compared with main memory

and the processor
 The area that has received the most attention is disk I/O

 Generality
 Desirable to handle all devices in a uniform manner
 The way processes view I/O devices and the way the operating

system manages I/O devices and operations
 Hide the details of device I/O so that user processes and upper levels

of OS see devices in terms of general functions such as read, write,
open, and close

 Diversity of devices makes it difficult to achieve true generality

Hierarchical Design
 Hierarchical nature of modern operating systems

 Operating system functions should be separated according to their
complexity, timescale, and their level of abstraction

 Leads to an OS organization into a series of layers
 Each layer performs a related subset of the functions and relies on the next

lower layer to perform more primitive functions and to conceal the details of
those functions. It provides services to the next higher layer.

 Layers should be defined so that changes in one layer do not require
changes in other layers

A Model of I/O Organization

open, close, read, write

I/O instructions, channel commands,
buffering techniques

interrupts, scheduling, and
queuing

Protocol layers such as TCP/IP

symbolic file names are
converted to identifiers
add, delete

open, close, read, write

logical reference to files
are converted to physical
addresses (track, sector)

 Source: Pearson

Buffering
 Perform data transfers in advance of requests

 For both inputs and outputs
 Can reduce time waiting for I/O to complete
 Also, avoid I/O interferences with OS swapping decisions

 Block-oriented device
 Stores information in blocks that are usually of fixed size
 Transfers are made one block at a time
 Possible to reference data by its block number
 Disks and USB devices are examples

 Stream-oriented device
 Transfers data as a stream of bytes
 No block structure
 Terminals, printers, keyboards, mouse, communications ports, and most

other devices that are not secondary storage are examples

I/O Buffering Schemes
 No buffering

 Without a buffer, the OS directly accesses
the device when it needs

 Single buffering
 OS assigns a buffer in the system portion

of main memory

 Double buffering
 Use two system buffers
 A process can transfer data to (or from)

one buffer while the operating system
empties (or fills) the other buffer

 Also known as buffer swapping

 Circular buffering
 When more than two buffers are used, the

collection of buffers is a circular buffer
 Each individual buffer is one unit in a

circular buffer

 Source: Pearson

Single Buffering
 For block-oriented devices

 Input transfers are made to the system buffer
 When the transfer is complete, the process moves the block into user

space and immediately requests another block
 Can speed up I/O since data are usually accessed sequentially

 For stream-oriented devices
 Line-at-a-time operation

− Used for dumb terminals or line printers
− User input is one line at a time with a carriage return
− Output to the terminal is similarly one line at a time

 Byte-at-a-time operation
− Used on forms-mode terminals, sensors and controllers
− When each keystroke is significant

Magnetic Disk
 A magnetic disk consists of a collection of platters,

each of which has two recordable surfaces.
 The stack of flatters rotate at 5400 RPM to 15000 RPM
 The diameter of this aluminum platter is from 3 ~ 12 cm

Platter

Track

Platters

Sectors

Tracks

 Read/write heads
 To read or write, the

read/write heads must
be moved so that they
are over the right track

 Disk heads for each
surface are connected
together and move in
conjunction

Magnetic Disk
 Cylinder: a set of tracks at a given radial position

 All the tracks under the heads at a given point on all surfaces
 Track: each surface is divided into concentric circles

 10,000 to 50,000 tracks per surface
 ZBR (Zone Bit Recording)

− The number of sectors per track increases in outer zones
 Sector - track is divided into fixed size sectors (100 ~

500 sectors/track)
 Preamble - allows head to be synchronized before r/w
 Data - 512B - 4KB
 Error correcting code (ECC)

− Hamming code or Reed-Solomon code
 Inter-sector gap
 Formatted capacity does not count preamble/ecc/gap

Magnetic Disk
 Performance

 Seek time
− To move the read/write head to the desired track
− 3 ~ 14ms, consecutive tracks less than 1 ms

 Rotational latency
− To locate the desired sector under the read/write head
− On average, it takes a half of a single rotation time
− 5400 ~ 16200 rpm (90 ~ 270 rotations/s), 2 ~ 6ms avg.

 Transfer time
− Depends on the rotation speed and data density
− 30 ~ 40MB/s, 512B sector takes 12 ~ 16us

 Disk Controller
 Accept commands from CPU

− read, write, format (write preambles), control the arm motion,
detect/correct errors, convert byte to a serial bit pattern, buffering/caching,

Disk Access Time

 Disk access time =
 Seek time + rotational latency + transfer time + controller overhead

 For example,
 HDD with the following characteristics

− 10,000 RPM
− Average seek time 6ms
− Transfer rate 50MB/s
− Controller overhead 0.2ms
− No disk idle time

 Average acceess time for a 512B sector =
− 6ms + 0.5 rotation / 10000RPM + 0.5KB/50MB/s + 0.2ms = 6 + 3 + 0.01 + 0.2 =

9.2ms
− Usually seek time is only 25% ~ 33% of the advertised number due to locality of

disk references
− Most disk controllers have a built-in cache and transfer rates from the cache are

typically much higher and up to 320MB/s

Timing Comparison
 Consider a disk with

 Seek time of 4ms
 Rotation speed of 7500 rpm
 512 byte sectors with 500 sectors per track

 Read a file consisting of 2500 sectors (1.28MB)
 Sequential organization

 The file occupies all the sectors of 5 adjacent tracks.
 Seek time = 4ms
 Rotational latency = 4ms
 Read 500 sectors = 8ms
 Total time = 16 + 4 * 12 = 64ms

 Random access
 Seek time = rotational latency = 4ms
 Read 1 sector = 0.016ms
 Total time = 2500 * 8.016 = 20.04s

 Which sectors are read from the disk has a tremendous impact on
I/O performance!

Disk Scheduling Algorithms

 Source: Pearson

Comparison of Disk Scheduling Algorithms

 Source: Pearson

FIFO
 Processes requests from the queue in sequential order
 Fair to all processes
 Approximate random scheduling in performance if

there are many processes competing for the disk

 Source: Pearson

Priority (PRI)
 The control of the scheduling is outside the control of

disk management software
 Goal is not to optimize disk utilization but to meet

other objectives
 Often short batch jobs and interactive jobs are given

higher priority
 Provides good interactive response time
 Longer jobs may have to wait an excessively long time

Shortest Service Time First (SSTF)
 Select the disk I/O request that requires the least

movement of the disk arm from its current position
 Always choose the minimum seek time

 Does not guarantee that the average seek time to be minimum

 Source: Pearson

SCAN
 Also known as the elevator algorithm
 Arm moves in one direction only

 Satisfies all outstanding requests until it reaches the last track in that direction
then the direction is reversed

 Favors jobs whose requests are for tracks nearest to
both innermost and outermost tracks and favors the
latest arriving jobs

 Source: Pearson

C-SCAN (Circular SCAN)
 Restricts scanning to one direction only
 When the last track has been visited in one direction,

the arm is returned to the opposite end of the disk and
the scan

 Source: Pearson

N-Step-SCAN and FSCAN
 N-Step-Scan

 Segment the disk request queue into subqueues of length N
 Subqueues are processed one at a time, using SCAN
 For a large value of N, the performance of N-Step-Scan approaches

that of SCAN. For a value of N = 1, it is the same as FIFO.

 FSCAN
 Uses two subqueues
 When a scan begins, all of the requests are in one of the queues, with

the other empty
 During scan, all new requests are put into the other queue
 Service of new requests is deferred until all of the old requests have

been processed

RAID
 Motivation

 Disk seek time has continued to improve slowly over time
 970 (50~100ms), 1990 (10ms), 2010 (3ms)

 Ideas
 Performance - parallel processing
 Reliability

 RAID (Redundant Array of Independent Disks)
 Consists of seven levels, zero through six
 These levels denote different design architectures that share 3 characteristics

− RAID is a set of physical disk drives viewed by the operating system as a single
logical drive

− Redundant disk capacity is used to store parity information, which guarantees
data recoverability in case of a disk failure

− Data are distributed across the physical drives of an array in a scheme known as
striping

RAID Level 0
 Stripping - distribute data over multiple disks

 When a transferred block consists of 8 sectors, 2 sectors (strip) are
distributed to different disk drive

 If a block size is bigger than # drives * strip size, multiple requests are
needed

 If a single request consists of multiple logically contiguous strips, then up to n
strips for that request can be handled in parallel

 No redundancy and no error detection/correction but
widely used

 Source: Pearson

RAID Level 1 (Mirroring)
 Redundancy is achieved by duplicating all the data

 Every disk in the array has a mirror disk
− When a drive fails the data may still be accessed from the second drive

 Advantage
 A read request can be served by either of two disks.
 There is no “write penalty”.

− Write can be done in parallel. On a write, RAID levels 2-6 must compute
and update parity bits as well as updating the actual strip.

 Principal disadvantage is the cost

 Source: Pearson

RAID Level 2
 Distribute each byte/word over multiple disks
 Add hamming code

 For example, for 4b nibbles, 3b extra
 Issues

 Require all drives to be rotationally synchronized
 Require a substantial number of drives
 On a write, all data disks and parity disk must be accessed

 Effective choice where many disk errors occur
 Usually RAIS2 is a overkill and is not implemented

 Source: Pearson

RAID Level 3
 Distribute each byte/word over multiple disks
 Add parity bit (bit-interleaved parity)

 Requires only a single redundant disk, no matter how large the disk array
 In case of a disk failure, the parity drive is accessed and data is

reconstructed from the remaining devices.
 Can achieve very high data transfer rates

 Source: Pearson

RAID Level 4
 RAID 4~6 make use of an independent access technique

 Each member disk operates independently. Separate IO requests can be
satisfied in parallel.

 Suitable for applications with high IO request rates but not suitable for
applications with high data transfer rates

 Block-interleaved parity
 A bit-by-bit parity strip is calculated across corresponding strips on each data

disk, and the parity bits are stored in the corresponding strip on the parity disk
 A write to disk X1 requires 2 reads of disk X1 and X4(parity) and 2

writes of disk X1 and X4

 Source: Pearson

RAID 4 Level
 Initially, the following relationship holds for each bit I

 X4(i) = X3(i) ⊕ X2(i) ⊕ X1(i) ⊕ X0(i)

 After the write
 X4’(i) = X3(i) ⊕ X2(i) ⊕ X1’(i) ⊕ X0(i)
 = X3(i) ⊕ X2(i) ⊕ X1’(i) ⊕ X0(i) ⊕ X1(i) ⊕ X1(i)
 = X3(i) ⊕ X2(i) ⊕ X1(i) ⊕ X0(i) ⊕ X1(i) ⊕ X1’(i)
 = X4(i) ⊕ X1(i) ⊕ X1’(i)

 Therefore, to calculate the new parity, it must read the
old user data and the old user parity
 Every write operation must involve the parity disk, which can become a

bottleneck.

RAID Level 5
 Similar to RAID-4 but distributes the parity bits across all disks
 Typical allocation is a round-robin scheme
 Has the characteristic that the loss of any one disk does not result

in data loss
 Widely used

 Source: Pearson

RAID Level 6
 Two different parity calculations are carried out and stored in

separate blocks on different disks
 One may use parity (exclusive-OR) and the other can be an independent

algorithm
 Provides extremely high data availability
 Incurs a substantial write penalty because each write affects two

parity blocks
 Compared to RAID5, RAID6 can suffer more than a 30% drop in write

performance

 Source: Pearson

Disk Cache
 Disk cache is a buffer in main memory for disk sectors

 Contains a copy of some of the sectors on the disk

 When an I/O request is made for a particular sector, a
check is made to determine if the sector is in the disk
cache
 If Yes, the request is satisfied via the cache
 If No, the requested sector is read into the disk cache from the disk

LRU
 The most commonly used algorithm
 The block that has not been referenced for the longest

time is replaced
 A stack of pointers reference the cache

 Most recently referenced block is on the top of the stack
 When a block is referenced or brought into the cache, it is placed on

the top of the stack

LFU (Least Frequently Used)
 The block that has experienced the fewest references

is replaced
 A counter is associated with each block
 Counter is incremented each time block is accessed
 When replacement is required, the block with the

smallest count is selected
 Problematic when

 Certain blocks are referenced relatively infrequently overall, but when
they are referenced, there are short intervals of repeated references
due to locality, building up high reference counts. After such interval is
over, the reference count may be misleading.

Homework 10
 Exercise 11.1
 Exercise 11.4
 Exercise 11.6
 Exercise 11.8

	Operating System��Chapter 11. I/O Management and � Disk Scheduling
	Categories of I/O Devices
	Data Rates
	Organization of I/O Function
	Techniques for Performing I/O
	Evolution of I/O Function
	DMA Block Diagram
	DMA Alternative Configurations
	Design Objectives
	Hierarchical Design
	A Model of I/O Organization
	Buffering
	I/O Buffering Schemes
	Single Buffering
	Magnetic Disk
	Magnetic Disk
	Magnetic Disk
	Disk Access Time
	Timing Comparison
	Disk Scheduling Algorithms
	Comparison of Disk Scheduling Algorithms
	FIFO
	Priority (PRI)
	Shortest Service Time First (SSTF)
	SCAN
	C-SCAN (Circular SCAN)
	N-Step-SCAN and FSCAN
	RAID
	RAID Level 0
	RAID Level 1 (Mirroring)
	RAID Level 2
	RAID Level 3
	RAID Level 4
	RAID 4 Level
	RAID Level 5
	RAID Level 6
	Disk Cache
	LRU
	LFU (Least Frequently Used)
	Homework 10

