SPEEDMAC: Speedy and Energy Efficient Data Delivery MAC Protocol for Real-Time Sensor Network Applications

ICC 2010

Motivation

Sleep delay is the dominant factor of WSN packet latency

- A packet can traverse at most a single hop each cycle
 - Minimum packet latency = cycle time *hops

Most of WSN applications have real-time characteristics

- Disaster monitoring, real-time target tracking, intrusion detection, health, etc.
 - However, it is practically *impossible to obtain both low latency and low energy communication* at the same time

Sleep delay exists for both synchronous & asynchronous MAC

- Synchronous scheduling (S-MAC, A-MAC)
 - A packet can traverse at most a single hop (or 2 with 'adaptive listening') each cycle since nodes beyond one-hop from the receiver cannot overhear the data.
- Asynchronous scheduling (B-MAC, Wise-MAC, XMAC)
 - A packet can traverse at most a single hop each cycle since a sender needs to send the preamble before starting the next-hop communication

Motivation

Synchronous skewed wakeup (DMAC) may be a solution!

- Schedule the wakeup time of each node in a pipelined fashion in the direction of packet movement so that
 - No sleep delay during the packet movement

Issues with synchronous skewed wakeup

- May fail to deliver the message when multiple sensors compete for the message delivery
 - A single event is likely to be detected by nearby multiple sensors
 - Multiple events may occur simultaneously, which leads to collisions and contentions
- More idle listening
 - Since a node must wake up during the entire DATA transmission period instead of RTS period as in SMAC
- May not be practically possible to use such wakeup scheduling techniques for real applications unless these issues are completely resolved.

Synchronous Skewed Wakeup

Computer System Laboratory

Synchronous Skewed Wakeup

Computer System Laboratory

SPEED MAC Ideas

- **Goal: Can we achieve both low-energy and low-latency at the same time?**
- **1. A collision signal to detect multi-source events & for fast event delivery**
 - A special control packet called SIGNAL packet is used. It has different electrical characteristics from background noise

2. Separate event report period from data delivery period

- Faster event report using a short control signal
- Lower energy consumption for idle period
 - To further reduce both the latency and the energy consumption

3. Adaptive wakeup for multi-source events

- Fast pipelined data delivery for a single-source event
- ► Full wakeup and CSMA-based data delivery for a multi-source event
 - Full duty-cycle operation for high-bandwidth transmission
 - Use RTS/CTS for busy periods

Synchronous Skewed Wakeup

Computer System Laboratory

Issues with Synchronous Skewed Wakeup

Assumptions

- Stationary sensor nodes and stationary sinks
- Many to one communication pattern from multiple sources to the sinks

Issues

- Contention
 - Only a single source can transmit the data and other sources may have to wait
- Collision
 - When multiple nodes transmit at the same time, the packets will eventually collide in an upper layer and no packet can be transmitted
- Transmission error
 - When a transmission error occurs, the sender needs to wait for the next cycle

For single-source event

- No contention, no collision, only need to consider error
- For multiple-source events
 - Need to consider contention, collision, and error

SPEED-MAC

Event announcement period: <u>Fast Event Announcement</u>

- In this period, nodes announce the presence of an event by sending a small control packet called a SIGNAL packet.
 - SIGNAL packet: consists of receiver address and collision bit
 - There is NO ACK packet for the signal packet.
- Collision detection for multi-source events
 - The *collision bit* tells that the event is a multi-source event.
 - Need to distinguish transmission errors from collision
- All the senders overhear the signal transmission from its parent
 - To distinguish a single source event from a multi-source event

Data transmission period: <u>Adaptive Wakeup</u>

- In this period, nodes transfer messages by sending DATA packets
- ► For a single-source event, the period consists of DATA and ACK
 - Fixed scheduled data transmission for single-source events (not a CSMA)
- ► For a multi-source event, the period consists of RTS/CTS/DATA/ACK
 - Contention-based data transmission for multi-source events (CSMA/CA)

SPEED-MAC: Single Source Event

No traffic

Nodes wakeup only during a signal rx slot.

- Single source traffic: single-packet data
 - Nodes wake up during signal rx/tx/rx slots and data slot

PEED-MAC: Multi-Packet & Multi-Source Event

Single source traffic: multi-packet data

Nodes wake up during signal rx/tx/rx slots and multiple data slots

 Gepth: 0
 Gepth: 1

 Gepth: 2
 Gepth: 3

Data Packet

Multi-source traffic

► Nodes wake up during signal rx/tx/rx slots and several RTS/CTS/DATA/ACK slots

ACK packet

SPEED-MAC with Multiple Sinks

We can handle sink-to-sensor, sensor-to-sensor, and many sensors-to-many sinks scenarios

Collision/Error Differentiation

Transmission error can occur due to two reasons

- Noise (Error)
 - Unwanted electrical signals interfering with the desired signal
 - The strength of the signal is irregular and variable
- Collision
 - Multiple simultaneous transmission collide at the receiver
 - The strength of the signal is regular and stronger
 - Can be differentiated at the physical layer by tracking RSSI
- In case of collision, the SIGNAL control packet is already destroyed.
 - COLLISION SIGNAL does not contain the receiver address anymore.
 - COLLISION SIGNAL packet is broadcast to the nodes in the upper layers
 - False-positive delivery: Nodes in the upper layers after the collision may unnecessarily wakeup

Collision/Error Differentiation

Computer System Laboratory

NS-2 Simulation Parameters

- # of nodes: 400 grid nodes + 1 sink node
- Power
 - Tx : 30mW, Rx : 15mW, Idle : 15mW
- Bandwidth: 20Kbps
- Packet size
 - Data packet: 100B
 - Signal packet: 6B
 - Control packet: 10B
- Tx & Rx slot length
 - Data: 103ms, Signal: 22ms
- Simulation time: 10 min
- Total number of event: 20 events
- # of source nodes: 1, 2, 4, 8, 16 nodes
- Basic cycle time
 - SMAC: 1.44s
 - SPEED-MAC, D-MAC: 2.88s

Single Source – Latency

SMAC

 SMAC suffers from the sleep delay and the additional buffering delay when the message generation interval is small.

SPEED-MAC vs. DMAC

- Due to the signaling wakeup period, SPEED-MAC's data latency is slightly higher than that of DMAC.
- Signal delivery latency of SPEED-MAC is almost close to the minimum delay achievable and is much smaller than DMAC's data delivery latency

Sir

Single Source - Energy

SMAC

As the packet generation interval decreases SMAC spends more energy in repeated wakeups and buffering.

SPEED-MAC vs. DMAC

- SPEED-MAC can achieve <u>an order of magnitude reduction</u> in the energy consumption compared to DMAC
 - By reducing the idle listening overhead and
 - By removing unnecessary wakeups during idle periods

Computer System Laboratory

Multiple Sources - Latency

SMAC

- Latency increases substantially as the number of source nodes increases. ►
 - This is due to the increased contention and buffering for multiple transactions.

SPEED-MAC vs. DMAC

- Constant and faster signal delivery latency even in multi-source events ►
- Noticeably higher data packet delay due to its adaptive wakeups and increased ► control packet (RTS and CTS) overhead for multi-source events.
 - For DMAC we use their assumption that an interference range of a node is twice

Multiple Sources - Energy

SMAC

SMAC spends more energy due to its higher duty cycle operations

> SPEED-MAC vs. DMAC

Like the single-source case, SPEED-MAC can substantially reduce the energy consumption by reducing the idle listening and removing unnecessary wakeups.

MICA-2 Mote Implementation

- Packet size: control packet: 10B, data packet: 100B
- Contention window: SYNC packet: 15 slots, Data packet: 31 slot

SINGLE SOURCE RESULTS

MULTIPLE SOURCE RESULTS

Computer System Laboratory