
Microprocessor Microarchitecture

Instruction Fetch

Lynn Choi

Dept. Of Computer and Electronics Engineering

Instruction Fetch w/ branch prediction

 On every cycle, 3 accesses are done in parallel

 Instruction cache access

 Branch target buffer access

 If hit, determines that it is a branch and provides target address

 Else, use fall-through address (PC+4) for the next sequential access

 Branch prediction table access

 If taken, instructions after the branch are not sent to back end and next fetch

starts from target address

 If not taken, next fetch starts from fall-through address

Motivation

 Wider issue demands higher instruction fetch rate

 However, Ifetch bandwidth limited by
 Basic block size

 Average block size is 4 ~ 5 instructions

 Need to increase basic block size!

 Branch prediction hit rate

 Cost of redirecting fetching

 More accurate prediction is needed

 Branch throughput

 Multiple branch prediction per cycle is necessary for wide-issue superscalar!

 Can fetch multiple contiguous basic blocks

 The number of instructions between taken branches is 6 ~ 7

 Limited by instruction cache line size

 Taken branches

 Fetch mechanism for non-contiguous basic blocks

 Instruction cache hit rate

 Instruction prefetching

Solutions

 Solutions

 Increase basic block size (using a compiler)

 Trace scheduling, superblock scheduling, predication

 Hardware mechanism to fetch multiple non-consecutive basic blocks are

needed!

 Multiple branch predictions per cycle

 Generate fetch addresses for multiple basic blocks

 Non-contiguous instruction alignment

 Need to fetch and align multiple noncontiguous basic blocks and pass them to the

pipeline

Current Work

 Existing schemes to fetch multiple basic blocks per cycle

 Branch address cache + multiple branch prediction - Yeh

 Branch address cache

 Natural extension of branch target buffer

 Provides the starting addresses of the next several basic blocks

 Interleaved instruction cache organization to fetch multiple basic blocks per

cycle

 Trace cache - Rotenberg

 Caching of dynamic instruction sequences

 Exploit locality of dynamic instruction streams, eliminating the need to fetch

multiple non-contiguous basic blocks and the need to align them to be

presented to the pipeline

Branch Address Cache Yeh & Patt

 Hardware mechanism to fetch multiple non-consecutive basic

blocks are needed!

 Multiple branch prediction per cycle using two-level adaptive predictors

 Branch address cache to generate fetch addresses for multiple basic blocks

 Interleaved instruction cache organization to provide enough bandwidth to

supply multiple non-consecutive basic blocks

 Non-contiguous instruction alignment

 Need to fetch and align multiple non-contiguous basic blocks and pass them to

the pipeline

Multiple Branch Predictions

IEEE All rights reserved

Multiple Branch Predictor

 Variations of global schemes are proposed

 Multiple Branch Global Adaptive Prediction using a Global Pattern History

Table (MGAg)

 Multiple Branch Global Adaptive Prediction using a Per-Set Pattern History

Table (MGAs)

 Multiple branch prediction based on local schemes

 Require more complicated BHT access due to sequential access of

primary/secondary/tertiary branches

Multiple Branch Predictors

IEEE All rights reserved

Branch Address Cache

 Only a single fetch address is used to access the BAC which

provides multiple target addresses

 For each prediction level L, BAC provides 2L of target address and fall-

through address

 For example, 3 branch predictions per cycle, BAC provides 14 (2 + 4 + 8) target

addresses

 For 2 branch predictions per cycle, TAC provides

 TAG

 Primary_valid, Primary_type

 Taddr, Naddr

 ST_valid, ST_type, SN_valid, SN_type

 TTaddr, TNaddr, SNaddr, NNaddr

ICache for Multiple BB Access

 Two alternatives

 Interleaved cache organization

 As long as there is no bank conflict

 Increasing the number of banks reduces conflicts

 Multi-ported cache

 Expensive

 ICache miss rate increases

 Since more instructions are fetched each cycle, there are fewer cycles

between Icache misses

 Increase associativity

 Increase cache size

 Prefetching

Fetch Performance

IEEE All rights reserved

Issues

 Issues of branch address cache

 I cache to support simultaneous access to multiple non-contiguous cache

lines

 Too expensive (multi-ported caches)

 Bank conflicts (interleaved organization)

 Complex shift and alignment logic to assemble non-contiguous blocks into

sequential instruction stream

 The number of target addresses stored in branch address cache increases

substantially as you increase the branch prediction throughput

Trace Cache Rotenberg & Smith

 Idea

 Caching of dynamic instruction stream (Icache stores static instruction stream)

 Based on the following two characteristics

 Temporal locality of instruction stream

 Branch behavior

 Most branches tend to be biased towards one direction or another

 Issues

 Redundant instruction storage

 Same instructions both in Icache and trace cache

 Same instructions among trace cache lines

Trace Cache Rotenberg & Smith

 Organization

 A special top-level instruction cache each line of which stores a trace, a

dynamic instruction stream sequence

 Trace

 A sequence of the dynamic instruction stream

 At most n instructions and m basic blocks

 n is the trace cache line size

 m is the branch predictor throughput

 Specified by a starting address and m - 1 branch outcomes

 Trace cache hit

 If a trace cache line has the same starting address and predicted branch outcomes

as the current IP

 Trace cache miss

 Fetching proceeds normally from instruction cache

Trace Cache Organization

IEEE All rights reserved

Design Options

 Associativity

 Path associativity

 The number of traces that start at the same address

 Partial matches

 When only the first few branch predictions match the branch flags, provide a

prefix of trace

 Indexing

 Fetch address vs. fetch address + predictions

 Multiple fill buffers

 Victim trace cache

Experimentation

 Assumption

 Unlimited hardware resources

 Constrained by true data dependences

 Unlimited register renaming

 Full dynamic execution

 Schemes

 SEQ1: 1 basic block at a time

 SEQ3: 3 consecutive basic blocks at a time

 TC: Trace cache

 CB: Collapsing buffer (Conte)

 BAC: Branch address cache (Yeh)

Performance

IEEE All rights reserved

Trace Cache Miss Rates

 Trace Miss Rate - % accesses missing TC

 Instruction miss rate - % instructions not supplied by TC

IEEE All rights reserved

Exercises and Discussion

 Itanium uses instruction buffer between FE and BE?

What is the advantages of using this structure?

 How can you add path associativity to the normal trace

cache?

