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Concurrency: Key Terminologies

atomic operation A function or action implemented as a sequence of one or more instructions
that appears to be indivisible; that is, no other process can see an intermediate
state or interrupt the operation. The sequence of instruction is guaranteed to
execute as a group, or not execute at all, having no visible effect on system
state. Atomicity guarantees isolation from concurrent processes.

critical section A section of code within a process that requires access to shared resources
and that must not be executed while another process is in a corresponding
section of code.

deadlock A situation in which two or more processes are unable to proceed because
each 1s waiting for one of the others to do something.

livelock A situation in which two or more processes continuously change their states
in response to changes in the other process(es) without doing any useful
work.

mutual exclusion The requirement that when one process 1s in a critical section that accesses
shared resources, no other process may be in a critical section that accesses
any of those shared resources.

race condition A situation in which multiple threads or processes read and write a shared
data item and the final result depends on the relative timing of their
execution.

starvation A situation in which a runnable process is overlooked indefinitely by the
scheduler; although it is able to proceed, it is never chosen.

Source: Pearson
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Atomic Operation

Q “Atomic” means
» Indivisible, uninterruptable
» Must be performed atomically, which means either “success” or “failure”
— Success: successfully change the system state
— Failure: no effect on the system state

Q Atomic operation

» A function or action implemented as a single instruction or as a sequence of
instructions that appears to be indivisible

— No other processes can see an intermediate state
» Can be implemented by hardware or by software
» HW-level atomic operations

— Test-and-set, fetch-and-add, compare-and-swap, load-link/store-conditional
» SW-level solutions

— Running a group of instructions in a critical section

O Atomicity is generally enforced by mutual exclusion
» To guarantee isolation from concurrent processes
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Mutual Exclusion & Critical Secti

d Mutual exclusion

» The problem of ensuring that only one process or thread must be in a
critical section at the same time

a Critical section
» A piece of code that has an access to a shared resource
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HW Support for Mutual Exclusion

—asaiiil?

A Disable interrupt on an entry to a critical section
» The simplest approach
— No context switching guarantees mutual exclusion

» Problem: only for a uniprocessor
— Disabling interrupt does not affect other cores/processors

— Other cores are free to run any code
~ Can enter a critical section for the same shared resource
~ Can execute the same code, disabling interrupts at different times for each core
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HW Support for Mutual Exclusion &

O Special machine instructions

» Test-and-set, fetch-and-add, compare-and-swap etc.
— Access to a shared memory location is exclusive and atomic

— Test-and-set is supported by most processor families
~ x86, IA64, SPARC, IBM z series, etc.

» These are atomic operations supported by the machine instructions
» Can be used to implement semaphores and other SW solutions
» Can also be used for multiprocessors

» Problem
— Busy waiting

~ Other process or thread accessing the same memory location must wait and retry
until the previous access is complete

— Deadlock and starvation can also happen
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SW Schemes for Mutual Exclusion &

"

0O Semaphores

— A process or thread must obtain a “semaphore” to enter the critical
section and release it on the exit

QO Monitor
O Message Passing
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Semaphore

d Semaphore

» A variable that provides a simple abstraction for controlling access to a
common resource in a programming environment

» The value of the semaphore variable can be changed by only 2 operations

— V operation (also known as “signal’)
~ Increment the semaphore

— P operation (also known as “wait”)
~ Decrement the semaphore

— The value of the semaphore S is usually the number of units of the resource that
are currently available.

A Type of semaphores

» Binary semaphore

— Have avalueofOor 1l
v 0 (locked, unavailable)
+ 1 (unlocked, unavailable)

» Counting semaphore
— Can have an arbitrary resource count
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Race Condition

d Race condition occurs

» When two or more processes/threads access shared data and they try to
change it at the same time. Because thread/process scheduling algorithm
can switch between threads, you don’t know which thread will access the

shared data first. In this situation, both threads are ‘racing’ to access/change
the data.

» Operations upon shared data are critical sections that must be mutually
exclusive in order to avoid harmful collision between processes or threads.
— Regarded as a programming error

— Difficult to locate this kind of programming errors as results are nondeterministic
and nOt rEPrOdUCIbIe Imitizl Sinte of the Linked List

0 Example ’{_‘) O r-O O >

> Two prOCGSSES attempt to Linked List Adter the Bemaval Operations
remove two nodes
simultaneously from a singly- |
linked list

- Resualiar Linked Lis
— Only one node is removed BN

instead of two. @ .®_.©_,
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Deadlock & Starvation

O Deadlock

» A situation where two or more competing processes are waiting for the other to

release a resource

P1 P2

a Starvation (Infinite Postponement)

» A situation where the progress of a process is indefinitely postponed by the
scheduler

QO Livelock

» A situation where two or more processes continuously change their states

without making progress
P e Computer System Laboratory




Compare and Swap Instruction

a “Compare and Swap” instruction
» A compare is made between a memory value and a test value

int compare_and swap (int *word, int testval, iInt
newval)

{
int oldval;
oldval = *word
1T (oldval == testval) *word = newval;
return oldval;

}

» Some version of this instruction is available on nearly all processor
families (x86, IA64, SPARC, IBM z series, etc.)

~ Atomicity is guaranteed by HW
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Critical Section using Compare and Swap

MR R
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/* program mutualexclusion */
const int n = /* number of processes */;
int bolt;
void P(int 1)
{
while (true) {
while (compare and swap(&bolt, 0, 1)
/* do nothing */;
/* critical section */:
bolt = 0;
/* remainder */;

}
}
void main()
{

bolt = 0;

parbegin (P(1), P(2), . . . ,P(n));

== 1)

(a) Compare and swap instruction

Source: Pearson
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Exchange Instruction

a “Exchange” instruction
» Exchange the content of a register with that of a memory location.

void exchange (int *register, Int *memory)

{
int temp;
temp = *memory;
*memory = *register;
*register = temp;

by

» x86 and IA-64 support XCHG instruction
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Critical Section using Exchange
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/* program mutualexclusion */

int const n = /* number of processes**/;

int bolt;
void P(int 1)

{

int keyi = 1;

while (true) {
do exchange (&keyi, &bolt)
while (keyi != 0);
/* critical section */;
bolt = 0;
/* remainder */;

}
}
void main()
{
bolt = 0;
parbegin (P(l), P(2), . . ., P(n));
}

(b) Exchange instruction

Source: Pearson
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Special Instructions: +/-

O Advantages

» Applicable to any number of processes on either a single processor or multiple
processors sharing main memory

» Simple and easy to verify
» |t can be used to support multiple critical sections; each critical section can be
defined by its own variable
0 Disadvantages
» Busy-waiting

» Starvation is possible when a process leaves a critical section and more than one
process is waiting

— The selection of a waiting process is arbitrary
» Deadlock is possible
— Process P1 executes compare and swap and enter its critical section
— P1is then interrupted and give control to P2 who has higher priority.
— P2 will be denied access due to mutual exclusion and go to busy waiting loop.
— P1 will never be dispatched since it has lower priority than P2.
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Semaphore

Q A variable that has an integer value upon which only
three operations are defined

1) May be initialized to a nonnegative integer value
2) The semWait (P) operation decrements the value
3) The semSignal (V) operation increments the value

0 There is no way to inspect or manipulate semaphores
other than these three operation
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Semaphore Primitives

struct semaphore {
int count;

queueType queue;
Hi
vold semWait(semaphore s)
{
s.count--;
if (s.count < 0) {
/* place this process
/* block this process

t
}
vold semSignal (semaphore s)
{
s.count++;
if (s.count <= 0) {
/* remove a process P
/* place process P on

in s.queues */;

*J,.f;

from s.queue */;
ready list */;

Figure 5.3 A Definition of Semaphore Primitives

Source: Pearson
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Binary Semaphore Primitives _{&
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struct binary semaphore {
enum {zero, one} value;
queueType queue;
bi
void semWaitB(binary semaphore s)
{
if (s.valus == one)
s.value = zero;
else {
/* place this process
/* block this process

}

void semSignalB(semaphore s)

if (s.queue 1is empty())
a.value = one;
else {
/* remove a process P
/* place process P on

in s.queue */;

‘k’lf;

from s.queue */;
ready list */;

Figure 5.4 A Definition of Binary Semaphore Primitives

Source: Pearson
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Strong/Weak Semaphores

Q A queue is used to hold processes waiting on the
semaphore

O Strong semaphore

» The process that has been blocked the longest is released from the queue
first (FIFO)

0 Weak semaphore
» The order in which processes are removed from the queue is not specified

P e Computer System Laboratory



Example of Semaphore Mechanis

@ Processor Walt ® Processor Walt/ Wal t/ Walt
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Blocked queue  Semaphore Ready queue Figure 5.5 Example of Semaphore Mechanism

Source: Pearson
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Mutual Exclusion

/* program mutualexclusion */

const int n = /* number of processes */;
semaphore s = 1;

vold P(int 1)

{
while (true) {
semWalt(s);
/* critical section  */;
semSignal(s);
/* remainder @ */;
t
}
vold main()
{
parbegin (P(1), P(2), . . ., P(n));
}

MR R

Figure 5.6 Mutual Exclusion Using Semaphores

Source: Pearson
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Shared Data Protected by a Semaphore

CDuewe for
semaphore lock

Walue of
semaphore lock

| 1

A

| £ 3

Source: Pearson

Critical
region

Mormal
execution

i —

Blocked on
semaphore
lock

Naote that normal
ExXecution can
procesd in parallel
b thar critical
repions are serialized.

Processes Accessing Shared Data Protected by a Semaphore
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Producer/Consumer Problem

0 General Situation
» One or more producers
— Produce data item and insert it in a buffer
» One consumer
— Delete it from the buffer and consume the data item
» Only one producer or consumer may access the buffer at any time

QO The problem
» Ensure that the producer can’'t add data into a full buffer
» Consumer can’'t remove data from an empty buffer
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out in

Note: shaded area indicates portion of buffer that 1s occupied

Figure 5.8 Infinite Buffer for the Producer/Consumer Problem
Source: Pearson
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Incorrect Solution

/* program producerconsumer */

int n;
binary semaphore s = 1, delay = 0;
void producer()
{
while (true) /{
produce();
semWaitB(s);
append () ;
n++;
if (n==1) semSignalB(delay);
semSignalB(s);
t
t
void consumer ()
{
semWaitB (delay);
while (true) /{
semWaitB(s);
take();
n--;
semSignalB(s);
consume () ;
if (n==0) semWaitB(delay);
t
t
void main()
{
m = I3
parbegin (producer, consumer);
t

Source: Pearson
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Possible Scenario

Table 5.4 Possible Scenario for the Program of Figure 5.9

Producer Consumer 5 n Delay
1 1 0 ]
2 semWaitB(s) ] ] I
3 n++ ] 1 0
4 if (n==1)
{semSignalB(delay)) i 1 |
5 semSienalBis) 1 1 1
6 semWaitB(delay) 1 1 (I
T semWaitBis) ] 1 I
5 n-- ] ] 0
] semSignalB(s) 1 ] 0
10 semWaitB(s) ] ] (I
11 n++ ] 1 0
12 if (n==1)
{semSignalB(delay)) i 1 |
13 semSienalBis) 1 1 1
14 if (n==0) (semWaitB(delay)) 1 1 1
15 semWaitBis) ] 1 1
16 n-- ] ] 1
17 semSignalB(s) 1 ] 1
15 if (n==0) (semWaitB(delay)) 1 ] (I
19 semWaitB(s) ] ] 0
20 n-- ] -1 0
ol semiSignlaB(s) 1 -1 0
Source: Pearson

NOTE: White areas represent the critical section controlled by semaphore s
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Correct Solution

MR R

/* program producerconsumer */

semaphore n = 0, s = 1;

void producer()

{

while (true) {

produce();
semWait(s);
append( ) ;
semSignal(s);
semSignal(n);

t
I
void consumer()
{
while (true) {
semWait(n);
semWait(s);
take();
semSignal(s);
consums( ) ;
}
I
void main()
{
parbegin (producer, consumer);
I

Figure 5.11 A Solution to the Infinite-Buffer Producer/Consumer Problem

Using Semaphores

Source: Pearson
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Scenario

MR R

Source: Pearson

Producer Consumer S n
1 1 0
2 Wait(s) 0 0
3 Signal(s) 1 0
4 Signal(n) 1 1
5 Wait(n) 1 0
6 Wait(s) 0 0
7 Signal(s) 1 0
8 Wait(s) 0 0
9 Signal(s) 1 0
10 Signal(n) 1 1
11 Wait(n) 1 0
12 Wait(s) 0 0
13 Signal(s) 1 0
14 Wait(s) 0 0
15 Signal(s) 1 0
16 Signal(n) 1 1
17 Wait(n) 1 0
18 Wait(s) 0 0
19 Signal(s) 1 0

Computer System Laboratory



Implementation of Semaphores

cEmWalt(s)

semFait({s)

i i
while {oompare and swap(s.flag, 0 , 1} == 1) imhibit interrupts)
f* do nothimg */) S.oount——}
5 .o0ount——) if {s.o0unt £ 0O} {
if (s.oount < 0) { f* pleoe this proosss in s.goeuas*)
f* plape this prooess in s.goeuessf) f* blook this proosss and allow interrupts *)p
/* blook this prooess [(must alsoc set s.flag to 9 }
' elze
} allow inte=rrupts)
s.Ilag = 0y ¥
}
sem3ignal s}
semEignal[s) {
{ inhibit interrupts)
while (ocompare and swapi{s.flag, 0 , 1} == 1} s.oount+3)
f* do nothimg %/ if (s.oount <= 0} {
S . 0ount++) f* remove a proo=ss P Irom s.gu=uoe=*)
if (s.oount <= 0} { /* plaoe proos=ss P on resdy list %)
f* remove a prooesss B from s.guens= &7) }
f* plaoge prooess P on ceady list =) allow interropts)
t }
s.T1lag = 0)
I
(a) Compare and Swap Instruction b} Interrupts
Figure 5.14 Two Possible Implementations of Semaphores
Source: Pearson
RS
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Monitor

Q Motivation
» Semaphore
— It is not easy to produce a correct program using semaphores

— semWait and semSignal operations may be scattered throughout a program and it
IS not easy to see the overall effect of these operations

d Monitor

» Programming language construct that provides equivalent functionality to that
of semaphores and is easier to control

» Implemented in a number of programming languages
— Including Concurrent Pascal, Pascal-Plus, Modula-2, Modula-3, and Java

» Monitor consists of one or more procedures, an initialization code, and local
data

— Local data variables are accessible only by the monitor’s procedures and not by
any external procedure

— Process enters the monitor by invoking one of its procedures
— Only one process may be executing in the monitor at a time
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Synchronization with Monitor

O Condition variable

» Monitor supports synchronization by the use of condition variables that are
contained within the monitor and accessible only within the monitor

» Condition variables are operated by two functions
— cwait(c): suspend the execution of the calling process on condition ¢

— csignal(c): resume the execution of a process blocked on the same
condition

~ If there are so such processes, the signal is lost (do nothing)

P e Computer System Laboratory



Structure of a Monitor

'

guene of
entering

pProcesses
monitor waiting area Entrance
{1 ¢
II_'I MONITOR
| ot
condition ¢l E I local data I
A
cwait(cl)
I condition variables I
L ]
L ]
- Procedure 1
- |
-
condition cn E .
g .
rait(c
cwa (cn) E Procedure k
o - S —
: urgent gueue E
A
=i 1
S I initialization code I
Source: Pearson
{1{ [}
Exit
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Problem Solution Using a Monitor

/* program producerconsumer */
monitor boundedbuffer;

char buffer [N];

int nextin, nextout;

int count;

cond notfull, notempty;

void append (char x)

{
if (count == N) cwait(notfull);
buffer[nextin] = x;
nextin = (nextin + 1) % N;
count++;
/* one more item in buffer */
csignal (notempty);
}
void take (char x)
{
if (count == 0) cwait(notempty);
%X = buffer[nextout];
nextout = (nextout + 1) % N;
count--;
csignal (notfull);
}
{
nextin = 0; nextout = 0; count = 0;
}

/* space for N items
/* buffer pointers
/* number of items in buffer

/* condition variables for synchronization

/* buffer is full; avoid overflow

/* resume any waiting consumer

/* buffer is empty; avoid underflow

/* one fewer item in buffer
/* resume any waiting producer

/* monitor body
/* buffer initially empty

t/
*/
*/
*/

*/

*/

t/
t/

*/
*/

void producer()

{
char x;
while (true) {
produce(x);
append (x);
}
}
void consumer|()
{
char x;
while (true) {
take(x);
consume (x);
}
1
void main()
{
parbegin (producer, consumer);
}

Source: Pearson
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Message Passing

O When processes interact with one another, the

following actions must be satisfied by the system
» Mutual exclusion
» Synchronization
» Communication

O Message passing is one approach to provide these
functions and

» Works with shared memory and distributed memory multiprocessors,
uniprocessors, and distributed systems

O The actual function is normally provided in the form of
a pair of primitives
» send (destination, message)

— A process sends information in the form of a message to another process
designated by a destination

» receive (source, message)

— A process receives information by executing the receive primitive, indicating

the source and the message
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Synchronization

0 Communication of a message between two processes
implies synchronization between the two
» The receiver cannot receive a message until it has been sent by another process

O Both sender and receiver can be blocking or nonblocking
» When a send primitive is executed, there are two possibilities
— Either the sending process is blocked until the message is received, or it is not
» When a receive primitive is executed there arealso two possibilities

— If a message has previously been sent the message is received and the execution
continues

— If there Is no waiting message the process is blocked until a message arrives or the
process continues to execute, abandoning the attempt to receive

P e Computer System Laboratory



Blocking/Nonblocking Send/Receives
I |
a Blocking send, blocking receive
» Both sender and receiver are blocked until the message is delivered
» Sometimes referred to as a rendezvous
» Allows for tight synchronization between processes

d Nonblocking send, blocking receive

» Sender continues on but receiver is blocked until the requested message arrives
» The most useful combination

» It allows a process to send one or more messages to a variety of destinations as
quickly as possible

d Nonblocking send, nonblocking receive
» Neither party is required to wait

P e Computer System Laboratory



Addressing

O Schemes for specifying processes in send and receive primitives
fall into two categories

O Direct addressing
» Send primitive includes a specific identifier of the destination process
» Receive primitive can be handled in one of two ways

— Explicit addressing
~ Require that the process explicitly designate a sending process
~ Effective for cooperating concurrent processes

— Implicit addressing

~ Source parameter of the receive primitive possesses a value returned when the receive
operation has been performed

O Indirect addressing

» Messages are sent to a shared data structure consisting of queues that can temporarily
hold messages

» Queues are referred to as mailboxes

» One process sends a message to the mailbox and the other process picks up the
message from the mailbox

» Allows for greater flexibility in the use of messages
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i) Many to many

Source: Pearson
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General Message Format oy

"

Message Type

Destination ID

Header Source ID

Message Length

Control Information

Message Contents

Body

Figure 5.19 General Message Format

Source: Pearson
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Mutual Exclusion

/* program mutualexclusion */

const int n = /* number of processes */;
void P(int 1)
{

message mMsg;
while (true) {
receive (box, msqg);
/* critical section */:
send (box, msqg);
/* remalinder */

}
}
void main()
{
create mailbox (box);
send (box, null);
parbegin (P(1l), P(2), . . ., P(n));
}

Figure 5.20 Mutual Exclusion Using Messages

Source: Pearson
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Producer Consumer with Message

= u-lﬂ"i-.'.i:

const int
capacity = /* buffering capacity */ ;
null =/* empty message */ ;
int i;
void producer()
{ message pmsJg;
while (true) {
receive (mayproduce, pmsg);
pmsg = produce();
send (mayconsume, pmsqg);
}
}

void consumer()
{ message cmsg;
while (true) {
receive (mayconsume, cmsg);
consumes (cmsqg) ;
send (mayproduce, null);

}
}
void main()
{
create mailbox (mayproduce);
create mailbox (mayconsume);
for (int 1 = 1; i <= capacity; i++) send (mayproduce, null);
parbegin (producer, consumer);
}

Source: Pearson
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Homework 4

d Exercise 5.2
O Exercise 5.6
d Exercise 5.1
Q Due by 10/12

P e Computer System Laboratory
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