
Operating System

Chapter 5. Concurrency:
Mutual Exclusion and Synchronization

Lynn Choi
School of Electrical Engineering

Table 5.1 Some Key Terms Related to Concurrency

Concurrency: Key Terminologies

 Source: Pearson

Atomic Operation
 “Atomic” means

 Indivisible, uninterruptable
 Must be performed atomically, which means either “success” or “failure”

− Success: successfully change the system state
− Failure: no effect on the system state

 Atomic operation
 A function or action implemented as a single instruction or as a sequence of

instructions that appears to be indivisible
− No other processes can see an intermediate state

 Can be implemented by hardware or by software
 HW-level atomic operations

− Test-and-set, fetch-and-add, compare-and-swap, load-link/store-conditional
 SW-level solutions

− Running a group of instructions in a critical section

 Atomicity is generally enforced by mutual exclusion
 To guarantee isolation from concurrent processes

Mutual Exclusion & Critical Section

 Mutual exclusion
 The problem of ensuring that only one process or thread must be in a

critical section at the same time

 Critical section
 A piece of code that has an access to a shared resource

HW Support for Mutual Exclusion
 Disable interrupt on an entry to a critical section

 The simplest approach
− No context switching guarantees mutual exclusion

 Problem: only for a uniprocessor
− Disabling interrupt does not affect other cores/processors
− Other cores are free to run any code

 Can enter a critical section for the same shared resource
 Can execute the same code, disabling interrupts at different times for each core

HW Support for Mutual Exclusion
 Special machine instructions

 Test-and-set, fetch-and-add, compare-and-swap etc.
− Access to a shared memory location is exclusive and atomic
− Test-and-set is supported by most processor families

 x86, IA64, SPARC, IBM z series, etc.

 These are atomic operations supported by the machine instructions
 Can be used to implement semaphores and other SW solutions
 Can also be used for multiprocessors
 Problem

− Busy waiting
 Other process or thread accessing the same memory location must wait and retry

until the previous access is complete
− Deadlock and starvation can also happen

SW Schemes for Mutual Exclusion
 Semaphores

− A process or thread must obtain a “semaphore” to enter the critical
section and release it on the exit

 Monitor
 Message Passing

Semaphore
 Semaphore

 A variable that provides a simple abstraction for controlling access to a
common resource in a programming environment

 The value of the semaphore variable can be changed by only 2 operations
− V operation (also known as “signal”)

 Increment the semaphore
− P operation (also known as “wait”)

 Decrement the semaphore
− The value of the semaphore S is usually the number of units of the resource that

are currently available.

 Type of semaphores
 Binary semaphore

− Have a value of 0 or 1
 0 (locked, unavailable)
 1 (unlocked, unavailable)

 Counting semaphore
− Can have an arbitrary resource count

Race Condition
 Race condition occurs

 When two or more processes/threads access shared data and they try to
change it at the same time. Because thread/process scheduling algorithm
can switch between threads, you don’t know which thread will access the
shared data first. In this situation, both threads are ‘racing’ to access/change
the data.

 Operations upon shared data are critical sections that must be mutually
exclusive in order to avoid harmful collision between processes or threads.
− Regarded as a programming error
− Difficult to locate this kind of programming errors as results are nondeterministic

and not reproducible

 Example
 Two processes attempt to

remove two nodes
simultaneously from a singly-
linked list
− Only one node is removed

instead of two.

http://en.wikipedia.org/wiki/File:Mutual_exclusion_example_with_linked_list.png�

Deadlock & Starvation
 Deadlock

 A situation where two or more competing processes are waiting for the other to
release a resource

 Starvation (Infinite Postponement)

 A situation where the progress of a process is indefinitely postponed by the
scheduler

 Livelock
 A situation where two or more processes continuously change their states

without making progress

 “Compare and Swap” instruction
 A compare is made between a memory value and a test value

int compare_and_swap (int *word, int testval, int
newval)

{

 int oldval;

 oldval = *word

 if (oldval == testval) *word = newval;

 return oldval;

}

 Some version of this instruction is available on nearly all processor
families (x86, IA64, SPARC, IBM z series, etc.)

Atomicity is guaranteed by HW

Compare and Swap Instruction

Critical Section using Compare and Swap

 Source: Pearson

 “Exchange” instruction
 Exchange the content of a register with that of a memory location.

void exchange (int *register, int *memory)

{

 int temp;

 temp = *memory;

 *memory = *register;

 *register = temp;

}

 x86 and IA-64 support XCHG instruction

Exchange Instruction

Critical Section using Exchange

 Source: Pearson

Special Instructions: +/−
 Advantages

 Applicable to any number of processes on either a single processor or multiple
processors sharing main memory

 Simple and easy to verify
 It can be used to support multiple critical sections; each critical section can be

defined by its own variable

 Disadvantages
 Busy-waiting
 Starvation is possible when a process leaves a critical section and more than one

process is waiting
− The selection of a waiting process is arbitrary

 Deadlock is possible
− Process P1 executes compare and swap and enter its critical section
− P1 is then interrupted and give control to P2 who has higher priority.
− P2 will be denied access due to mutual exclusion and go to busy waiting loop.
− P1 will never be dispatched since it has lower priority than P2.

Semaphore
 A variable that has an integer value upon which only

three operations are defined
1) May be initialized to a nonnegative integer value

2) The semWait (P) operation decrements the value

3) The semSignal (V) operation increments the value

 There is no way to inspect or manipulate semaphores
other than these three operation

Semaphore Primitives

 Source: Pearson

Binary Semaphore Primitives

 Source: Pearson

Strong/Weak Semaphores
 A queue is used to hold processes waiting on the

semaphore

 Strong semaphore
 The process that has been blocked the longest is released from the queue

first (FIFO)

 Weak semaphore
 The order in which processes are removed from the queue is not specified

Example of Semaphore Mechanism

Wait

Wait

Signal

Wait/Wait/Wait

Signal

 Source: Pearson

Mutual Exclusion

 Source: Pearson

Shared Data Protected by a Semaphore

 Source: Pearson

Producer/Consumer Problem
 General Situation

 One or more producers
− Produce data item and insert it in a buffer

 One consumer
− Delete it from the buffer and consume the data item

 Only one producer or consumer may access the buffer at any time

 The problem
 Ensure that the producer can’t add data into a full buffer
 Consumer can’t remove data from an empty buffer

Buffer Structure

 Source: Pearson

Figure 5.9 An Incorrect Solution to the Infinite-Buffer Producer/Consumer Problem Using Binary Semaphores

Incorrect Solution

 Source: Pearson

Possible Scenario

 Source: Pearson

Correct Solution

 Source: Pearson

Scenario
Producer Consumer s n

1 1 0

2 Wait(s) 0 0

3 Signal(s) 1 0

4 Signal(n) 1 1

5 Wait(n) 1 0

6 Wait(s) 0 0

7 Signal(s) 1 0

8 Wait(s) 0 0

9 Signal(s) 1 0

10 Signal(n) 1 1

11 Wait(n) 1 0

12 Wait(s) 0 0

13 Signal(s) 1 0

14 Wait(s) 0 0

15 Signal(s) 1 0

16 Signal(n) 1 1

17 Wait(n) 1 0

18 Wait(s) 0 0

19 Signal(s) 1 0
 Source: Pearson

Implementation of Semaphores

 Source: Pearson

Monitor
 Motivation

 Semaphore
− It is not easy to produce a correct program using semaphores
− semWait and semSignal operations may be scattered throughout a program and it

is not easy to see the overall effect of these operations

 Monitor
 Programming language construct that provides equivalent functionality to that

of semaphores and is easier to control
 Implemented in a number of programming languages

− Including Concurrent Pascal, Pascal-Plus, Modula-2, Modula-3, and Java
 Monitor consists of one or more procedures, an initialization code, and local

data
− Local data variables are accessible only by the monitor’s procedures and not by

any external procedure
− Process enters the monitor by invoking one of its procedures
− Only one process may be executing in the monitor at a time

Synchronization with Monitor
 Condition variable

 Monitor supports synchronization by the use of condition variables that are
contained within the monitor and accessible only within the monitor

 Condition variables are operated by two functions
− cwait(c): suspend the execution of the calling process on condition c
− csignal(c): resume the execution of a process blocked on the same

condition
 If there are so such processes, the signal is lost (do nothing)

Structure of a Monitor

 Source: Pearson

Problem Solution Using a Monitor

Figure 5.16 A Solution to the Bounded-Buffer Producer/Consumer Problem Using a Monitor

 Source: Pearson

Message Passing
 When processes interact with one another, the

following actions must be satisfied by the system
 Mutual exclusion
 Synchronization
 Communication

 Message passing is one approach to provide these
functions and
 Works with shared memory and distributed memory multiprocessors,

uniprocessors, and distributed systems

 The actual function is normally provided in the form of
a pair of primitives
 send (destination, message)

− A process sends information in the form of a message to another process
designated by a destination

 receive (source, message)
− A process receives information by executing the receive primitive, indicating

the source and the message

Synchronization
 Communication of a message between two processes

implies synchronization between the two
 The receiver cannot receive a message until it has been sent by another process

 Both sender and receiver can be blocking or nonblocking
 When a send primitive is executed, there are two possibilities

− Either the sending process is blocked until the message is received, or it is not
 When a receive primitive is executed there arealso two possibilities

− If a message has previously been sent the message is received and the execution
continues

− If there is no waiting message the process is blocked until a message arrives or the
process continues to execute, abandoning the attempt to receive

Blocking/Nonblocking Send/Receive
 Blocking send, blocking receive

 Both sender and receiver are blocked until the message is delivered
 Sometimes referred to as a rendezvous
 Allows for tight synchronization between processes

 Nonblocking send, blocking receive
 Sender continues on but receiver is blocked until the requested message arrives
 The most useful combination
 It allows a process to send one or more messages to a variety of destinations as

quickly as possible

 Nonblocking send, nonblocking receive
 Neither party is required to wait

Addressing
 Schemes for specifying processes in send and receive primitives

fall into two categories
 Direct addressing

 Send primitive includes a specific identifier of the destination process
 Receive primitive can be handled in one of two ways

− Explicit addressing
 Require that the process explicitly designate a sending process
 Effective for cooperating concurrent processes

− Implicit addressing
 Source parameter of the receive primitive possesses a value returned when the receive

operation has been performed

 Indirect addressing
 Messages are sent to a shared data structure consisting of queues that can temporarily

hold messages
 Queues are referred to as mailboxes
 One process sends a message to the mailbox and the other process picks up the

message from the mailbox
 Allows for greater flexibility in the use of messages

Indirect Process Communication

 Source: Pearson

General Message Format

 Source: Pearson

Mutual Exclusion

 Source: Pearson

 Producer Consumer with Message

 Source: Pearson

Homework 4
 Exercise 5.2
 Exercise 5.6
 Exercise 5.7
 Due by 10/12

	Operating System��Chapter 5. Concurrency: �Mutual Exclusion and Synchronization
	슬라이드 번호 2
	Atomic Operation
	Mutual Exclusion & Critical Section
	HW Support for Mutual Exclusion
	HW Support for Mutual Exclusion
	SW Schemes for Mutual Exclusion
	Semaphore
	Race Condition
	Deadlock & Starvation
	Compare and Swap Instruction
	Critical Section using Compare and Swap
	Exchange Instruction
	Critical Section using Exchange
	Special Instructions: +/
	Semaphore
	Semaphore Primitives
	슬라이드 번호 18
	Strong/Weak Semaphores
	슬라이드 번호 20
	슬라이드 번호 21
	Shared Data Protected by a Semaphore
	Producer/Consumer Problem
	Buffer Structure
	슬라이드 번호 25
	슬라이드 번호 26
	슬라이드 번호 27
	Scenario
	Implementation of Semaphores
	Monitor
	Synchronization with Monitor
	Structure of a Monitor
	Problem Solution Using a Monitor
	Message Passing
	Synchronization
	Blocking/Nonblocking Send/Receive
	Addressing
	슬라이드 번호 38
	General Message Format
	슬라이드 번호 40
	 Producer Consumer with Message
	Homework 4

