KECE321 Communication Systems I

 (Haykin Sec. 3.9-Sec. 4.2)Lecture \#13, April 30, 2012
Prof. Young-Chai Ko

Announcement

- No class on May 7, Monday
- Supplementary class: May 11, Friday - 4:00-5:15 PM

Summary

- Superheterodyne receiver
- Frequency-division multiplexing
- Time-division multiplexing
- Code-division multiplexing
- Angle modulation
- Basics
- Properties of angle-modulated waves

Superheterodyne Receiver

- Functions in the receiver for broadcasting system
- Carrier-frequency tuning
- Filtering
- Amplification

Frequency Division Multiplexing

Figure 3.29 Block diagram of frequency-division multiplexing (FDM) system.
[Ref: Haykin Textbook]

Time Division Multiplexing

Figure 5.21 Block diagram of TDM system.
[Ref: Haykin Textbook]

Angle Modulation

- Basic definition of angle modulation

$$
s(t)=A_{c} \cos \left[\theta_{i}(t)\right]=A_{c} \cos \left[2 \pi f_{c} t+\phi_{c}\right]
$$

Phase modulation (PM) if

$$
\theta_{i}(t)=2 \pi f_{c} t+k_{p} m(t)
$$

Frequency modulation (FM) if

$$
\theta_{i}(t)=2 \pi f_{c} t+2 \pi k_{f} \int_{0}^{t} m(\tau) d \tau
$$

Basic Definition

- Angle modulated wave

$$
\left.s(t)=A_{c} \cos \left[\theta_{i}(t)\right)\right]
$$

- Average frequency in hertz

$$
f_{\Delta t}=\frac{\theta(t+\Delta t)-\theta(t)}{2 \pi \Delta t}
$$

- Instantaneous frequency of the angle modulated signal

$$
f_{i}(t)=\lim _{\Delta t \rightarrow 0} f_{\Delta t}(t)=\frac{1}{2 \pi} \frac{d \theta_{i}(t)}{d t}
$$

Thus

$$
\theta_{i}(t)=2 \pi f_{c} t+\phi_{c}, \quad \text { for } m(t)=0
$$

- Phase modulation (PM):
a form of angle modulation in which instantaneous angle is varied linearly with with the message signal

$$
\begin{aligned}
& \theta_{i}(t)=2 \pi f_{c} t+k_{p} m(t) \\
& s(t)=A_{c} \cos \left[2 \pi f_{c} t+k_{p} m(t)\right] \\
& \quad k_{p}: \text { phase sensitivity factor }
\end{aligned}
$$

- Frequency modulation (FM):
a form of angle modulation in which the instantaneous frequency is varied linearly with the message signal

$$
\begin{gathered}
f_{i}(t)=f_{c}+k_{f} m(t) \\
\theta_{i}(t)=2 \pi \int_{0}^{t} f_{i}(t) d \tau=2 \pi f_{c} t+2 \pi k_{f} \int_{0}^{t} m(\tau) d \tau \\
s(t)=A_{c} \cos \left[2 \pi f_{c} t+2 \pi k_{f} \int_{0}^{t} m(\tau) d \tau\right]
\end{gathered}
$$

k_{f} : frequency sensitivity factor

Table 4.1 Summary of Basic Definitions in Angle Modulation
$\left.\begin{array}{llll} & \text { Phase modulation } & \text { Frequency modulation } & \text { Comments } \\ \hline \begin{array}{l}\text { Instantaneous } \\ \text { phase } \theta_{i}(t)\end{array} & 2 \pi f_{c} t+k_{p} m(t) & 2 \pi f_{c} t+2 \pi k_{f} \int_{0}^{t} m(\tau) d \tau & \begin{array}{l}A_{c}: \text { carrier amplitude } \\ f_{c}: \text { carrier frequency } \\ m(t): \text { message signal } \\ k_{p}: \text { phase-sensitivity } \\ \text { factor }\end{array} \\ k_{f} \text { frequency-sensitivity } \\ \text { factor }\end{array}\right]$

Properties of Angle-Modulated Wave

- Property 1: Constancy of transmitted wave
- The amplitude of PM and FM waves is maintained at a constant value equal to the carrier amplitude for all time.
- The average transmitted power of angle-modulated wave is a constant

$$
\begin{gathered}
P_{a v}=\frac{1}{2} A_{c}^{2} \\
P_{a v}=\frac{1}{T} \int_{T}\left[A_{c} \cos \left(\theta_{i}(t)\right)\right]^{2} d t=\frac{1}{2} A_{c}^{2}
\end{gathered}
$$

Example:

Message signal: $m(t)=\cos \left(2 \pi f_{m} t\right)$

DSB-SC signal: $A_{c} m(t) \cos \left(2 \pi f_{c} t\right)$

Example:

Message signal: $m(t)=\cos \left(2 \pi f_{m} t\right)$

PM signal: $A_{c} \cos \left(2 \pi f_{c} t+k_{p} m(t)\right)=A_{c} \cos \left(2 \pi f_{c} t+k_{p} \cos \left(2 \pi f_{m} t\right)\right)$

$k_{p}=2 \pi$

Example:

Message signal: $m(t)=\cos \left(2 \pi f_{m} t\right)$

FM signal: $A_{c} \cos \left[2 \pi f_{c} t+2 \pi k_{f} \int_{0}^{t} \cos \left(2 \pi f_{m} \tau\right) d \tau\right]=A_{c} \cos \left[2 \pi f_{c} t+2 \pi k_{f} \sin \left(2 \pi f_{m} t\right)\right]$

- Property 2: Nonlinearity of the modulation process

$$
\begin{gathered}
m(t)=m_{1}(t)+m_{2}(t) \\
s(t)=A_{c} \cos \left[2 \pi f_{c} t+k_{p}\left(m_{1}(t)+m_{2}(t)\right)\right] \\
s_{1}(t)=A_{c} \cos \left(2 \pi f_{c} t+k_{p} m_{1}(t)\right), \quad s_{2}(t)=A_{c} \cos \left(2 \pi f_{c} t+k_{p} m_{2}(t)\right) \\
s(t) \neq s_{1}(t)+s_{2}(t)
\end{gathered}
$$

- Property 3: Irregularity of zero-crossing
- Property 4: Visualization difficulty of message waveform
- Property 5: Tradeoff between increased transmission bandwidth for improved noise performance

Example of Zero-Crossing

- Consider the message signal given as

$$
m(t)= \begin{cases}a t, & t \geq 0 \\ 0, & t<0\end{cases}
$$

$$
a=1
$$

PM signal

$$
s(t)= \begin{cases}A_{c} \cos \left(2 \pi f_{c} t+k_{p} a t\right), & t \geq 0 \\ A_{c} \cos \left(2 \pi f_{c} t\right), & t<0\end{cases}
$$

FM signal

$$
2 \pi k_{f} \int_{0}^{t} a \tau d \tau=\pi k_{f} a t^{2}
$$

$$
s(t)= \begin{cases}A_{c} \cos \left(2 \pi f_{c} t+\pi k_{f} a t^{2}\right), & t \geq 0 \\ A_{c} \cos \left(2 \pi f_{c} t\right), & t<0\end{cases}
$$

PM for $k_{p}=\pi / 2$
FM for $k_{f}=1$

$s(t)=A_{c} \cos \left(2 \pi f_{c} t+\pi t^{2}\right), \quad t \geq 0$
$f_{i}(t)=\frac{1}{2 \pi} \frac{d}{d t}\left(2 \pi f_{c} t+\pi t^{2}\right)=f_{c}+t$

PM signal

$$
s(t)= \begin{cases}A_{c} \cos \left(2 \pi f_{c} t+k_{p} a t\right), & t \geq 0 \\ A_{c} \cos \left(2 \pi f_{c} t\right), & t<0\end{cases}
$$

PM signal is zero at the instance of time t_{n}

$$
2 \pi f_{c} t_{n}+k_{p} a t_{n}=\frac{\pi}{2}+n \pi, \quad n=0,1,2, \ldots
$$

- Solving for t_{n} gives

$$
\begin{aligned}
& t_{n}=\frac{\frac{1}{2}+n}{2 f_{c}+\frac{k_{p}}{\pi} a}=\frac{1}{2}+n, \quad n=0,1,2, \ldots \\
& f_{c}=1 / 4[\mathrm{~Hz}] \text { and } a=1 \mathrm{volt} / \mathrm{s}
\end{aligned}
$$

FM signal:

$$
s(t)= \begin{cases}A_{c} \cos \left(2 \pi f_{c} t+\pi k_{f} a t^{2}\right), & t \geq 0 \\ A_{c} \cos \left(2 \pi f_{c} t\right), & t<0\end{cases}
$$

Zero crossing at

$$
2 \pi f_{c} t_{n}+\pi k_{f} a t_{n}^{2}=\frac{\pi}{2}+n \pi, \quad n=0,1,2, \ldots
$$

Solving for t_{n} gives

$$
\begin{gathered}
t_{n}=\frac{1}{a k_{f}}\left(-f_{c}+\sqrt{f_{c}^{2}+a k_{f}\left(\frac{1}{2}+n\right)}\right), \quad n=0,1,2, \ldots \\
t_{n}=\frac{1}{4}(-1+\sqrt{9+16 n}), \quad n=0,1,2, \ldots \\
f_{c}=1 / 4[\mathrm{~Hz}] \text { and } a=1 \mathrm{volt} / \mathrm{s}
\end{gathered}
$$

