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Summary of Today’s Lecture

m  Signal Classification

®m Basic Continuous-Time Signals

m  Singular functions

- Signal classification
- Singular functions

- Fourier series

- Fourier transform

- Linear time-invariant system
- Impulse (system) response
- Convolution

- Revisit to Fourier transform

4 ~ 5 weeks

Modulation
Demodulation

- Amplitude modulation

- Phase modulation

- Frequency modulation

- Delta/Pulse code modulation

|1 ~ 12 weeks
<€




Signal Classification

Continuous-Time and Discrete-Time signals
Analog and Digital signals

Real and Complex signals

Deterministic and Random signals

Even and Odd signals

Periodic and Nonperiodic signals

Energy and Power signals




Continuous-Time and Discrete-Time Signals

®  Continuous-time signals

- A signal x(%) is continuous-time if ¢ is a continuous variable.

®  Discrete-time signals

- If t is a discrete variable, that is, (%) is defined at discrete times, then x(t) is
a discrete-time signal.

- Since a discrete time is defined at discrete times such as ¢t = n’I’, a discrete-time
signal is often identified as a sequence of numbers, denoted by {x, } or x|n]




Continuous-Time and Discrete-Time Signals
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Analog and Digital Signals

Analog signals

—00 < z(t) < 0o

Digital signals

ZC[’I?,] S {Q17QQ7"° 7Qn}

Analog signals to Digital signals

» Sampling —

Quantization

>1|n]




Real and Complex Signals

®  Redl signal
- If x(t) takes real number, it is a real signal
®  Complex signal
x(t) = x1(t) + jaa(t)
- Questions for fun

s the complex signal real?

Does there really exist an tmaginary part?




Even signal if

Odd signal if

Even and Odd Signals

xr(—t) = x(t)
r(—t) = —x(t)
A('f)
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Any signal x(t) can be expressed as a sum of even and odd signals:

(1) = we(t) + 2o (1)

Even part and odd part of

re(t) = 5 {alt) + 2(~1)}

ro(t) = 5 {a(t) — x(~1)}
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Periodic and Nonperiodic Signals

* Periodic signal with period 7T if
x(t+T)=uxz(t) forallt

* Fundamental period 1o

-  smallest positive value of T’

T'=mly for any integer m




Energy and Power Signals

Energy of continuous time S|gna| x(t) is defined as

Normalized average power is defined as

1 ©.@)
P = lim —/ 2(t)]? dt

T— 00 5o

x(t) is an energy signal if and only if
0<E <o

x(t) is a power signal if and only if

0< P <




Phasor Signals and Spectra

m A useful periodic signal in system analysis is the complex signal
P(t) = Aed@ott0) oo <t < x0
A : amplitude
wo : frequency in radian per second or fo = wo/27 hertz
0o : phase in radians

We refer to Z(t) as a rotating phasor to distinguish from the phasor e’°.

®m  Wecan show that Z(t) = 2(¢t + Tp) with T, = 27 /wy = 1/ fo. Thus Z(t) is periodic
signal with period 7y =1/ fo.




® A rotating phasor Ae/(@ott+9) can be related to a real, sinusoidal signal A cos(wot + 6)
in two ways.

The first is by taking its real part,
r(t) = Acos(wot+ 0)=R[z(t)]
— %[Aej(WOHH)]

The second is by taking one-half of the sum of Z(¢) and its complex conjugate,
1 1

Acos(wot +0) = 55:(15) + 553*(15)
1 ) t+06 1 —1 t+0
—  ZAedwottt) 4 = fo—i(wot+0)
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m Let x(t) = Acos(wot + 0). Then we showed that

v(t) = Rz(t)] = S2(t) +27(¢)

DO | —

Two equivalent representation of x(¢) in the frequency domain may be obtained
by noting that the rotating phasor signal is completely specified if the
parameters, A and 6, are given for a particular f;.

Thus plots of the magnitude and angle of Ae’? versus frequency gives sufficient
information to characterize x(¢) completely.
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®m  Example 1, Sketch the single-sided spectra of

, 1
x(t) = 2sin (lOwt — 67T> .

We note that z(¢) can be written as

(1) = 2cos(10mt— —7 — 2x) = 2cos 10mt — 2
x = 2cos mt— om— om | =2cos mt— o
— % {263'(107%—2#/3)} _ J(10mt—2m/3) | —;j(10mt—2m/3)
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®m Example 2, If more than one sinusoidal component is present in a signal, its spectra
consists of multiple lines. For example, the signal

, 1
y(t) = 2sin <1O7Tt — 67T> + cos(207t)

can be written as  y(t)

2
2 cos (1O7Tt — §7T> + cos(207t)

— R |:2€j(107rt—27r/3) _|_6j207rt}

_ 6j(107rt—27r/3) + 6—j(107rt—27r/3) + 163207”5 4+ 16—j207rt
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Singular Functions

®  Unit step function
®  Unit impulse function (Dirac delta function)

®  Signum function (which will be discussed later on)




Unit Step Function

Definition

Shifted unit step function

1, t>tg

+ VY
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Unit Impulse Function (Dirac Delta Function)

¢ t
rect | —
T

1

m  Rectangular pulse

t 1, —L<t<dL
rect 7)1=9 0. a 2 h 2
, elsewhere T t
2 2
: , g(t)
®m Consider the rectangular pulse given as Area=1

1 ©.@)
1 ' o /
t) = —rect [ — —o0
g(t) rec (26)
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Now consider li_r% ¢g(t) in which case the area is still 1.

2




®m  Also consider the Gaussian pulse given as

(t) = ! ex —i
A V2mo? P\ 202
o

We can prove that ¢(¢) has a unit area, that is, / g(t)dt=1

t=—oc

Now if we take o2 — 0, 9() is in narrower gaussian pulse shape
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®m  We define Dirac delta function as a function which has the property of 21_1;% g(t)

(or lim g(t)in the Gaussian pulse) and denoteitas §(¢) .
02—0

® Definition of Dirac delta (or unit impulse) function

/OO x(t)d(t) dt = x(0) or /OO x(t)o(t — to) dt = x(to)

— 50 — 00

where (1) is any continuous function at time ¢t =0 \here x(t) is any continuous function at timet = &g

By considering the special case z(¢) =1 and «(¢) =0 for ¢t <t and ¢ > t,, the
following two properties are obtained:

to
/ 5(t—t0)dt:1, 1 <t <to
t

1 and

S(t—to) =0, ¢t




® Some properties of the delta function

1. 6(at) = 146(t)

2. 4(—t) =4(2)
3.
ts z(tp), 1 <t<ty
] z(t)o(t —tp) dt =< O, otherwise
ty undefined for tg = t; or i»

4. x(t)o(t —to) = x(to)d(t — to), z(t) continuous at t = 2o
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