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Memory Hierarchy 
 Motivated by 

 Principles of Locality 
 Speed vs. size vs. cost tradeoff 

 
 Locality principle  

 Spatial Locality: nearby references are likely 
− Example: arrays, program codes 
− Access a block of contiguous words  

 Temporal Locality: the same reference is likely to occur soon 
− Example: loops, reuse of variables 
− Keep recently accessed data to closer to the processor 

 
 Speed vs. Size tradeoff 

 Bigger memory is slower: SRAM - DRAM - Disk - Tape 
 Fast memory is more expensive 
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Cache 
 A small but fast memory located between processor 

and main memory  
 Benefits 

 Reduce load latency 
 Reduce store latency 
 Reduce bus traffic (on-chip caches) 

 Cache Block Allocation (When to place) 
 On a read miss 
 On a write miss 

− Write-allocate vs. no-write-allocate 

 Cache Block Placement (Where to place) 
 Fully-associative cache 
 Direct-mapped cache 
 Set-associative cache 
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Direct Mapped Cache 
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Set Associative Cache 
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Cache Block Replacement 
 Random 

 Just pick one and replace it 
 Pseudo-random: use simple hash algorithm using address 

 LRU (least recently used) 
 need to keep timestamp 
 expensive due to global compare 
 Pseudo-LRU: use LFU using bit tags 

 Replacement policy critical for small caches 
 



3+1 Types of Cache Misses 
 Cold-start misses (or compulsory misses): the first 

access to a block is always not in the cache 
 Misses even in an infinite cache 

 Capacity misses: if the memory blocks needed by a 
program is bigger than the cache size, then capacity 
misses will occur due to cache block replacement. 
 Misses even in fully associative cache 

 Conflict misses (or collision misses): for direct-
mapped or set-associative cache, too many blocks can 
be mapped to the same set. 

 Invalidation misses (or sharing misses): cache blocks 
can be invalidated due to coherence traffic 
 



Miss Rates (SPEC92) 
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Virtual Memory 

 Virtual memory 
 Programmer’s view of memory  
 A linear array of bytes addressed by the virtual address 

 Physical memory 
 Machine’s physical memory (DRAM) 
 Also, called main memory 

 

 Virtual address 
 The address of a program 

 Physical address 
 The address of a DRAM 



Virtual Memory 

 Functions 
 Large address space 

− Easy to program 
− Provide the illusion of infinite amount of memory 
− Program code/data can exceed the main memory size 
− Processes partially resident in memory 

 Protection 
− Privilege level 
− Access rights: read/modify/execute permission 

 Sharing  
 Portability 
 Increased CPU utilization 

− More programs can run at the same time 



Virtual Memory 

 Require the following functions 
 Memory allocation (Placement) 
 Memory deallocation (Replacement) 
 Memory mapping (Translation) 

 
 Memory management 

 Automatic movement of data between main memory and secondary 
storage 
− Done by operating system with the help of processor HW  
− Main memory contains only the most frequently used portions of a 

process’s address space 
 Illusion of infinite memory (size of secondary storage) but access time 

is equal to main memory 
 Use demand paging 

− Bring a page on demand 

 



Paging and Segmentation 

 Source: Pearson 



Paging 
 Divide address space into fixed size pages 

 VA consists of (VPN, offset) 
 PA consists of (PPN, offset) 

 Map a virtual page to a physical page frame at runtime 
 Each process has its own page table 

 The page table contains mapping between VPN and PPN 
 VPN is used as an index into the page table 

 Page table entry (PTE) contains 
 PPN 
 Presence bit – 1 if this page is in main memory 
 Dirty bit – 1 if this page has been modified 
 Reference bits – reference statistics info used for page replacement 
 Access control – read/write/execute permissions 
 Privilege level – user-level page versus system-level page 
 Disk address 

 Internal fragmentation 



Virtual Address and PTE 

 Source: Pearson 



Virtual to Physical Address Translation 

 Source: Pearson 



Paging 

 Page table organization 
 Linear: one PTE per virtual page 
 Hierarchical: tree structured page table 

− Page table itself can be paged due to its size 
 For example, 32b VA, 4KB page, 16B PTE requires 16MB page table 

− Page directory tables  
PTE contains descriptor (i.e. index) for page table pages 

− Page tables - only leaf nodes 
PTE contains descriptor for page  

 Inverted: PTEs for only pages in main memory 
 Page table entries are dynamically allocated as needed 



Paging 

 Different virtual memory faults 
 TLB miss - PTE not in TLB 
 PTE miss - PTE not in main memory 
 Page miss - page not in main memory 
 Access violation  
 Privilege violation 



Multi-Level Page Tables 
 Given: 

 4KB (212) page size 
 32-bit address space 
 4-byte PTE  

 Problem: 
 Would need a 4 MB page table! 

− 220 *4 bytes 

 Common solution 
 multi-level page tables 
 e.g., 2-level table (P6) 

− Level 1 table: 1024 entries, each of which points 
to a Level 2 page table. 
 This is called page directory 

− Level 2 table:  1024 entries, each of which points 
to a page 

Level 1 
Table 

... 

Level 2 
Tables 



Two-Level Hierarchical Page Table 

 Source: Pearson 



Inverted Page Table 

 PTEs for only pages in main memory  
 VPN is mapped into a hash value, which points to 

an inverted page table entry 
 Fixed proportion of physical memory is required for the page tables 

regardless of the number of processes 

 



Inverted Page Table 

 Source: Pearson 



TLB 
 TLB (Translation Lookaside Buffer) 

 Cache of page table entries (PTEs) 
 On TLB hit, can do virtual to physical translation without accessing the page 

table 
 On TLB miss, must search the page table for the missing entry 

 TLB configuration 
 ~100 entries, usually fully associative cache 
 sometimes mutil-level TLBs, TLB shootdown issue 
 usually separate I-TLB and D-TLB, accessed every cycle 
 Miss handling 

− On a TLB miss, exception handler (with the help of operating system) search 
page table for the missed TLB entry and insert it into TLB 
 Software managed TLBs - TLB insert/delete instructions 
 Flexible but slow: TLB miss handler ~ 100 instructions 

− Sometimes, by HW - HW page walker 
 



Address Translation with TLB 

 Source: Pearson 



DECStation 3100 Example 

 Source: Morgan Kaufmann 



TLB Organization 

 Source: Pearson 



Page Size 
 The smaller the page size, the lesser the amount of 

internal fragmentation 
 However, more pages are required per process 
 More pages per process means larger page tables 
 For large programs in a heavily multiprogrammed environment 

portion of the page tables of active processes must be in secondary 
storage instead of main memory 

 The physical characteristics of most secondary-memory devices 
favor a larger page size for more efficient block transfer 

 



Paging Behavior of a Program 
 As page size increases, each page will contain locations further away from 

recent references, increasing the page fault rate, but the fault rate begin to fall as 
the page size approaches the size of the entire process 

 Source: Pearson 



Example: Page Sizes 

 Source: Pearson 



Segment Organization 

 Segmentation allows a programmer to view a virtual 
memory as a collection of segments 

 Advantages 
 Simplify the handling of growing data structures 
 Allow program modules to be altered and recompiled independently 
 Facilitate sharing among processes 

 Segment table entry contains the starting address of 
the corresponding segment in main memory and the 
length of the segment 
 A presence bit is needed to determine if the segment is already in main 

memory 
 A dirty bit is needed to determine if the segment has been modified since it 

was loaded in main memory 

 



Address Translation 

 Source: Pearson 



Paged Segmentation 
 Virtual address space is broken up into a number of 

segments. Each segment is broken up into a number of 
fixed-sized pages. 
 

 Source: Pearson 



Address Translation 

 Source: Pearson 



Virtual Memory Policies 

 Key issues: Performance 
Minimize page faults 

 Source: Pearson 



Fetch Policy 
 Demand Paging 

 Bring a page into main memory only on a page miss 
 Generate many page faults when process is first started  
 Principle of locality suggests that as more and more pages are 

brought in, most future references will be to pages that have recently 
been brought in, and page faults should drop to a very low level 

 Prepaging  
 Pages other than the one demanded by a page fault are brought in 
 If pages of a process are stored contiguously in secondary memory 

it is more efficient to bring in a number of pages at one time 
 Ineffective if extra pages are not referenced 



Frame Locking 

 When a frame is locked, the page currently 
stored in that frame should not be replaced 
OS kernel and key control structures are locked 
 I/O buffers and time-critical areas may be locked 
Locking is achieved by associating a lock bit with each 

frame 



Replacement Algorithms 
 Optimal 

Select the page for which the time to the next reference 
is the longest 

 LRU 
 Select the page that has not been referenced for the longest 

time 

 FIFO 
 Page that has been in memory the longest is replaced 

 Clock 
 Associate a use bit with each frame 
 When a page is first loaded or referenced, the use bit is set to 1 
 Any frame with a use bit of 1 is passed over by the algorithm 
 Page frames visualized as laid out in a circle 

 

 



Combined Examples 

 Source: Pearson 



Clock Policy 

 Source: Pearson 



Comparison of Algorithms 

 Source: Pearson 



Page Buffering 
 A replaced page is not lost, but rather assigned to one 

of two lists 
 Free page list is a list of page frames available for reading in pages 

− When a page is to be read in, the page frame at the head of the list is 
used, destroying the page that was there 

− When a unmodified page is to be replaced, it remains in memory and its 
page frame is added to the tail of the free page list 

 Modified page list is a list of page frames that have been modified 
− When a modified page is to be written out and replaced, the page frame 

is added to the tail of the modified page list 
 Note that when a page is replaced, the page is not physically moved. 

Instead, the PTE for this page is removed and placed in either the 
free or modified page list 

 Used in VAX VMS 
 

 



Working Set Management 

 The OS must decide how many pages to bring in  
 The smaller the amount of memory allocated to each process, the 

more processes can reside in memory 
 Small number of pages loaded increases page faults 
 Beyond a certain size, further allocations of pages will not effect the 

page fault rate 

 Fixed allocation 
 Allocate a fixed number of frames to a process 
 On a page fault, one of the pages of that process must be replaced 

 Variable allocation 
 Allow the number of page frames allocated to a process to be varied 

over the lifetime of the process 
 



Replacement Scope 
 The scope of a replacement strategy can be global or local 
 Local scope 

 Choose only among the resident pages of the process generating the fault 
 Global scope 

 Consider all unlocked pages in main memory  
 
 

 Source: Pearson 



Fixed Allocation, Local Scope 

 Necessary to decide ahead of time the amount of 
allocation to a process 

 If allocation is too small, there will be a high page 
fault rate 

 If allocation is too large, there will be too few 
processes in main memory 
 Increase processor idle time 
 Increase time spent in swapping 



Variable Allocation, Global Scope 

 Easiest to implement 
 Adopted in many operating systems 

 OS maintains a list of free frames 
 Free frame is added to working set of a process when 

a page fault occurs 
 If no frames are available, the OS must choose a page 

currently in memory, except the locked frames 



Variable Allocation, Local Scope 

 When a new process is loaded into main memory, 
allocate to it a certain number of page frames as its 
working set 

 When a page fault occurs, select the page to replace 
from among the resident set of the process that suffers 
the fault 

 Reevaluate the allocation provided to the process and 
increase or decrease it to improve overall 
performance 
 Decision to increase or decrease a working set size is based on the 

assessment of future demands 



Working Set of a Process 

 Source: Pearson 



   Page Fault Frequency (PFF) 

 Requires a use bit to be associated with each page in 
memory 
 Bit is set to 1 when that page is accessed 
 When a page fault occurs, the OS notes the virtual time since the 

last page fault for that process 
 If the amount of time since the last page fault is less than a 

threshold, then a page is added to the working set of the process 
 The strategy can be refined by using 2 thresholds: An upper 

threshold is used to trigger a growth in the working set size while a 
lower threshold is used to trigger a shrink in the working set size. 

 Does not perform well during the transient periods 
when there is a shift to a new locality 

 



Cleaning Policy 
 Concerned with determining when a modified page 

should be written out to secondary memory 
 Demand cleaning 

 A page is written out to secondary memory only when it has been selected for 
replacement 

 Precleaning 
 Write modified pages before they are replaced 
 The pages may be modified again before they are replaced 

 



Multiprogramming 

Swapping Thrashing 

 Determines the 
number of processes 
that will be resident 
in main memory 
  Multiprogramming 

level 
 Too few processes 

lead to swapping 
 Too many processes, 

lead to insufficient 
working set size, 
resulting in thrashing 
(frequent faults) 

 
 Source: Pearson 



Process Suspension 

 If the degree of multiprogramming is to be reduced, 
one or more of the currently resident processes must 
be swapped out 

 Six possibilities 
 Lowest-priority process 
 Faulting process 
 Last process activated 
 Process with the smallest working set 
 Largest process 
 Process with the largest remaining execution window 

 



Unix 
 Intended to be machine independent 

 Early Unix: variable partitioning with no virtual memory 
scheme 

 Current implementations of UNIX and Solaris make use of two 
separate memory management schemes 
− Paging system for user processes and disk I/O 
− Kernel memory allocator to manage memory allocation for 

the kernel 
 



UNIX SVR4 Memory Management Format 

One entry for each page 

One entry for each page 

Indexed by frame number and used 
by the replacement algorithm 

One entry for each page (one table for each swap device

 Source: Pearson 



UNIX SVR4 Memory Management Parameters 

 Source: Pearson 



UNIX SVR4 Memory Management Parameters 

 Source: Pearson 



Homework 7 
 Exercise 8.1 
 Exercise 8.2 
 Exercise 8.6 
 Exercise 8.9 
 Exercise 8.15 
 Exercise 8.16 


	Operating System��Chapter 8. Virtual Memory
	Memory Hierarchy
	Levels of Memory Hierarchy
	Cache
	Fully Associative Cache
	Fully Associative Cache
	Direct Mapped Cache
	Direct Mapped Cache
	Set Associative Cache
	Set Associative Cache
	Cache Block Replacement
	3+1 Types of Cache Misses
	Miss Rates (SPEC92)
	Virtual Memory
	Virtual Memory
	Virtual Memory
	Paging and Segmentation
	Paging
	슬라이드 번호 19
	Virtual to Physical Address Translation
	Paging
	Paging
	Multi-Level Page Tables
	Two-Level Hierarchical Page Table
	Inverted Page Table
	Inverted Page Table
	TLB
	슬라이드 번호 28
	슬라이드 번호 29
	슬라이드 번호 30
	Page Size
	Paging Behavior of a Program
	Example: Page Sizes
	Segment Organization
	Address Translation
	Paged Segmentation
	Address Translation
	Virtual Memory Policies
	Fetch Policy
	Frame Locking
	Replacement Algorithms
	Combined Examples
	Clock Policy
	Comparison of Algorithms
	Page Buffering
	Working Set Management
	Replacement Scope
	Fixed Allocation, Local Scope
	Variable Allocation, Global Scope
	Variable Allocation, Local Scope
	슬라이드 번호 51
	   Page Fault Frequency (PFF)
	Cleaning Policy
	Multiprogramming
	Process Suspension
	Unix
	UNIX SVR4 Memory Management Format
	UNIX SVR4 Memory Management Parameters
	UNIX SVR4 Memory Management Parameters
	Homework 7

