
Operating System

Chapter 8. Virtual Memory

Lynn Choi
School of Electrical Engineering

Memory Hierarchy
 Motivated by

 Principles of Locality
 Speed vs. size vs. cost tradeoff

 Locality principle

 Spatial Locality: nearby references are likely
− Example: arrays, program codes
− Access a block of contiguous words

 Temporal Locality: the same reference is likely to occur soon
− Example: loops, reuse of variables
− Keep recently accessed data to closer to the processor

 Speed vs. Size tradeoff

 Bigger memory is slower: SRAM - DRAM - Disk - Tape
 Fast memory is more expensive

Levels of Memory Hierarchy

Registers

Cache

Main Memory

Disk

Network/Cloud

Instruction
Operands

Cache Line

Page

File

Capacity/Access Time Moved By Faster/Smaller

Slower/Larger

Program/Compiler
1- 16B

H/W
16 - 512B

OS
512B – 64MB

User
any size

100-KBs

KBs-MBs

100GBs

Infinite

MBs-GBs

Cache
 A small but fast memory located between processor

and main memory
 Benefits

 Reduce load latency
 Reduce store latency
 Reduce bus traffic (on-chip caches)

 Cache Block Allocation (When to place)
 On a read miss
 On a write miss

− Write-allocate vs. no-write-allocate

 Cache Block Placement (Where to place)
 Fully-associative cache
 Direct-mapped cache
 Set-associative cache

Fully Associative Cache

32KB cache (SRAM)

Virtual Address Space
32 bit VA = 4GB (DRAM)

0

228-1

0

Cache Block
(Cache Line)

Memory Block

A memory block can be placed into
any cache block location!

211-1

32b Word, 4 Word Cache Block

Fully Associative Cache

32KB DATA RAM

211-1

0

211-1

0

TAG RAM

3 0 31
tag

=

=

=
=

offset

V

Word & Byte select

Data out

Data to CPU

Advantages Disadvantages
 1. High hit rate 1. Very expensive
 2. Fast

Yes

Cache Hit

Direct Mapped Cache

32KB cache (SRAM)

Virtual Address Space
32 bit VA = 4GB (DRAM)

0

228-1

0 Memory Block

A memory block can be placed into
only a single cache block!

211-1

211

2*211

(217-1)*211

…..

Direct Mapped Cache

32KB DATA RAM

211-1

0

211-1

0

TAG RAM

3 0 31
index offset

V

Word &
Byte select

Data out

Data to CPU
Disadvantages Advantages
 1. Low hit rate 1. Simple HW
 2. Fast Implementation

tag

=

Cache Hit

Yes

14 4

Set Associative Cache

32KB cache (SRAM)

0

228-1

0 Memory Block

In an M-way set associative cache,
A memory block can be placed into
M cache blocks!

211-1

210

2*210

(218-1)*210

210

Way 0

Way 1

210-1

210 sets

210 sets

Set Associative Cache

32KB DATA RAM

210-1

0

210-1

0

TAG RAM

3 0 31
index offset

V

Word &
Byte select

Data out

Data to CPU

tag

=

Cache Hit

Yes
=

13 4

Wmux

Most caches are implemented as
set-associative caches!

Cache Block Replacement
 Random

 Just pick one and replace it
 Pseudo-random: use simple hash algorithm using address

 LRU (least recently used)
 need to keep timestamp
 expensive due to global compare
 Pseudo-LRU: use LFU using bit tags

 Replacement policy critical for small caches

3+1 Types of Cache Misses
 Cold-start misses (or compulsory misses): the first

access to a block is always not in the cache
 Misses even in an infinite cache

 Capacity misses: if the memory blocks needed by a
program is bigger than the cache size, then capacity
misses will occur due to cache block replacement.
 Misses even in fully associative cache

 Conflict misses (or collision misses): for direct-
mapped or set-associative cache, too many blocks can
be mapped to the same set.

 Invalidation misses (or sharing misses): cache blocks
can be invalidated due to coherence traffic

Miss Rates (SPEC92)

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

Virtual Memory

 Virtual memory
 Programmer’s view of memory
 A linear array of bytes addressed by the virtual address

 Physical memory
 Machine’s physical memory (DRAM)
 Also, called main memory

 Virtual address
 The address of a program

 Physical address
 The address of a DRAM

Virtual Memory

 Functions
 Large address space

− Easy to program
− Provide the illusion of infinite amount of memory
− Program code/data can exceed the main memory size
− Processes partially resident in memory

 Protection
− Privilege level
− Access rights: read/modify/execute permission

 Sharing
 Portability
 Increased CPU utilization

− More programs can run at the same time

Virtual Memory

 Require the following functions
 Memory allocation (Placement)
 Memory deallocation (Replacement)
 Memory mapping (Translation)

 Memory management

 Automatic movement of data between main memory and secondary
storage
− Done by operating system with the help of processor HW
− Main memory contains only the most frequently used portions of a

process’s address space
 Illusion of infinite memory (size of secondary storage) but access time

is equal to main memory
 Use demand paging

− Bring a page on demand

Paging and Segmentation

 Source: Pearson

Paging
 Divide address space into fixed size pages

 VA consists of (VPN, offset)
 PA consists of (PPN, offset)

 Map a virtual page to a physical page frame at runtime
 Each process has its own page table

 The page table contains mapping between VPN and PPN
 VPN is used as an index into the page table

 Page table entry (PTE) contains
 PPN
 Presence bit – 1 if this page is in main memory
 Dirty bit – 1 if this page has been modified
 Reference bits – reference statistics info used for page replacement
 Access control – read/write/execute permissions
 Privilege level – user-level page versus system-level page
 Disk address

 Internal fragmentation

Virtual Address and PTE

 Source: Pearson

Virtual to Physical Address Translation

 Source: Pearson

Paging

 Page table organization
 Linear: one PTE per virtual page
 Hierarchical: tree structured page table

− Page table itself can be paged due to its size
 For example, 32b VA, 4KB page, 16B PTE requires 16MB page table

− Page directory tables
PTE contains descriptor (i.e. index) for page table pages

− Page tables - only leaf nodes
PTE contains descriptor for page

 Inverted: PTEs for only pages in main memory
 Page table entries are dynamically allocated as needed

Paging

 Different virtual memory faults
 TLB miss - PTE not in TLB
 PTE miss - PTE not in main memory
 Page miss - page not in main memory
 Access violation
 Privilege violation

Multi-Level Page Tables
 Given:

 4KB (212) page size
 32-bit address space
 4-byte PTE

 Problem:
 Would need a 4 MB page table!

− 220 *4 bytes

 Common solution
 multi-level page tables
 e.g., 2-level table (P6)

− Level 1 table: 1024 entries, each of which points
to a Level 2 page table.
 This is called page directory

− Level 2 table: 1024 entries, each of which points
to a page

Level 1
Table

...

Level 2
Tables

Two-Level Hierarchical Page Table

 Source: Pearson

Inverted Page Table

 PTEs for only pages in main memory
 VPN is mapped into a hash value, which points to

an inverted page table entry
 Fixed proportion of physical memory is required for the page tables

regardless of the number of processes

Inverted Page Table

 Source: Pearson

TLB
 TLB (Translation Lookaside Buffer)

 Cache of page table entries (PTEs)
 On TLB hit, can do virtual to physical translation without accessing the page

table
 On TLB miss, must search the page table for the missing entry

 TLB configuration
 ~100 entries, usually fully associative cache
 sometimes mutil-level TLBs, TLB shootdown issue
 usually separate I-TLB and D-TLB, accessed every cycle
 Miss handling

− On a TLB miss, exception handler (with the help of operating system) search
page table for the missed TLB entry and insert it into TLB
 Software managed TLBs - TLB insert/delete instructions
 Flexible but slow: TLB miss handler ~ 100 instructions

− Sometimes, by HW - HW page walker

Address Translation with TLB

 Source: Pearson

DECStation 3100 Example

 Source: Morgan Kaufmann

TLB Organization

 Source: Pearson

Page Size
 The smaller the page size, the lesser the amount of

internal fragmentation
 However, more pages are required per process
 More pages per process means larger page tables
 For large programs in a heavily multiprogrammed environment

portion of the page tables of active processes must be in secondary
storage instead of main memory

 The physical characteristics of most secondary-memory devices
favor a larger page size for more efficient block transfer

Paging Behavior of a Program
 As page size increases, each page will contain locations further away from

recent references, increasing the page fault rate, but the fault rate begin to fall as
the page size approaches the size of the entire process

 Source: Pearson

Example: Page Sizes

 Source: Pearson

Segment Organization

 Segmentation allows a programmer to view a virtual
memory as a collection of segments

 Advantages
 Simplify the handling of growing data structures
 Allow program modules to be altered and recompiled independently
 Facilitate sharing among processes

 Segment table entry contains the starting address of
the corresponding segment in main memory and the
length of the segment
 A presence bit is needed to determine if the segment is already in main

memory
 A dirty bit is needed to determine if the segment has been modified since it

was loaded in main memory

Address Translation

 Source: Pearson

Paged Segmentation
 Virtual address space is broken up into a number of

segments. Each segment is broken up into a number of
fixed-sized pages.

 Source: Pearson

Address Translation

 Source: Pearson

Virtual Memory Policies

 Key issues: Performance
Minimize page faults

 Source: Pearson

Fetch Policy
 Demand Paging

 Bring a page into main memory only on a page miss
 Generate many page faults when process is first started
 Principle of locality suggests that as more and more pages are

brought in, most future references will be to pages that have recently
been brought in, and page faults should drop to a very low level

 Prepaging
 Pages other than the one demanded by a page fault are brought in
 If pages of a process are stored contiguously in secondary memory

it is more efficient to bring in a number of pages at one time
 Ineffective if extra pages are not referenced

Frame Locking

 When a frame is locked, the page currently
stored in that frame should not be replaced
OS kernel and key control structures are locked
 I/O buffers and time-critical areas may be locked
Locking is achieved by associating a lock bit with each

frame

Replacement Algorithms
 Optimal

Select the page for which the time to the next reference
is the longest

 LRU
 Select the page that has not been referenced for the longest

time

 FIFO
 Page that has been in memory the longest is replaced

 Clock
 Associate a use bit with each frame
 When a page is first loaded or referenced, the use bit is set to 1
 Any frame with a use bit of 1 is passed over by the algorithm
 Page frames visualized as laid out in a circle

Combined Examples

 Source: Pearson

Clock Policy

 Source: Pearson

Comparison of Algorithms

 Source: Pearson

Page Buffering
 A replaced page is not lost, but rather assigned to one

of two lists
 Free page list is a list of page frames available for reading in pages

− When a page is to be read in, the page frame at the head of the list is
used, destroying the page that was there

− When a unmodified page is to be replaced, it remains in memory and its
page frame is added to the tail of the free page list

 Modified page list is a list of page frames that have been modified
− When a modified page is to be written out and replaced, the page frame

is added to the tail of the modified page list
 Note that when a page is replaced, the page is not physically moved.

Instead, the PTE for this page is removed and placed in either the
free or modified page list

 Used in VAX VMS

Working Set Management

 The OS must decide how many pages to bring in
 The smaller the amount of memory allocated to each process, the

more processes can reside in memory
 Small number of pages loaded increases page faults
 Beyond a certain size, further allocations of pages will not effect the

page fault rate

 Fixed allocation
 Allocate a fixed number of frames to a process
 On a page fault, one of the pages of that process must be replaced

 Variable allocation
 Allow the number of page frames allocated to a process to be varied

over the lifetime of the process

Replacement Scope
 The scope of a replacement strategy can be global or local
 Local scope

 Choose only among the resident pages of the process generating the fault
 Global scope

 Consider all unlocked pages in main memory

 Source: Pearson

Fixed Allocation, Local Scope

 Necessary to decide ahead of time the amount of
allocation to a process

 If allocation is too small, there will be a high page
fault rate

 If allocation is too large, there will be too few
processes in main memory
 Increase processor idle time
 Increase time spent in swapping

Variable Allocation, Global Scope

 Easiest to implement
 Adopted in many operating systems

 OS maintains a list of free frames
 Free frame is added to working set of a process when

a page fault occurs
 If no frames are available, the OS must choose a page

currently in memory, except the locked frames

Variable Allocation, Local Scope

 When a new process is loaded into main memory,
allocate to it a certain number of page frames as its
working set

 When a page fault occurs, select the page to replace
from among the resident set of the process that suffers
the fault

 Reevaluate the allocation provided to the process and
increase or decrease it to improve overall
performance
 Decision to increase or decrease a working set size is based on the

assessment of future demands

Working Set of a Process

 Source: Pearson

 Page Fault Frequency (PFF)

 Requires a use bit to be associated with each page in
memory
 Bit is set to 1 when that page is accessed
 When a page fault occurs, the OS notes the virtual time since the

last page fault for that process
 If the amount of time since the last page fault is less than a

threshold, then a page is added to the working set of the process
 The strategy can be refined by using 2 thresholds: An upper

threshold is used to trigger a growth in the working set size while a
lower threshold is used to trigger a shrink in the working set size.

 Does not perform well during the transient periods
when there is a shift to a new locality

Cleaning Policy
 Concerned with determining when a modified page

should be written out to secondary memory
 Demand cleaning

 A page is written out to secondary memory only when it has been selected for
replacement

 Precleaning
 Write modified pages before they are replaced
 The pages may be modified again before they are replaced

Multiprogramming

Swapping Thrashing

 Determines the
number of processes
that will be resident
in main memory
 Multiprogramming

level
 Too few processes

lead to swapping
 Too many processes,

lead to insufficient
working set size,
resulting in thrashing
(frequent faults)

 Source: Pearson

Process Suspension

 If the degree of multiprogramming is to be reduced,
one or more of the currently resident processes must
be swapped out

 Six possibilities
 Lowest-priority process
 Faulting process
 Last process activated
 Process with the smallest working set
 Largest process
 Process with the largest remaining execution window

Unix
 Intended to be machine independent

 Early Unix: variable partitioning with no virtual memory
scheme

 Current implementations of UNIX and Solaris make use of two
separate memory management schemes
− Paging system for user processes and disk I/O
− Kernel memory allocator to manage memory allocation for

the kernel

UNIX SVR4 Memory Management Format

One entry for each page

One entry for each page

Indexed by frame number and used
by the replacement algorithm

One entry for each page (one table for each swap device

 Source: Pearson

UNIX SVR4 Memory Management Parameters

 Source: Pearson

UNIX SVR4 Memory Management Parameters

 Source: Pearson

Homework 7
 Exercise 8.1
 Exercise 8.2
 Exercise 8.6
 Exercise 8.9
 Exercise 8.15
 Exercise 8.16

	Operating System��Chapter 8. Virtual Memory
	Memory Hierarchy
	Levels of Memory Hierarchy
	Cache
	Fully Associative Cache
	Fully Associative Cache
	Direct Mapped Cache
	Direct Mapped Cache
	Set Associative Cache
	Set Associative Cache
	Cache Block Replacement
	3+1 Types of Cache Misses
	Miss Rates (SPEC92)
	Virtual Memory
	Virtual Memory
	Virtual Memory
	Paging and Segmentation
	Paging
	슬라이드 번호 19
	Virtual to Physical Address Translation
	Paging
	Paging
	Multi-Level Page Tables
	Two-Level Hierarchical Page Table
	Inverted Page Table
	Inverted Page Table
	TLB
	슬라이드 번호 28
	슬라이드 번호 29
	슬라이드 번호 30
	Page Size
	Paging Behavior of a Program
	Example: Page Sizes
	Segment Organization
	Address Translation
	Paged Segmentation
	Address Translation
	Virtual Memory Policies
	Fetch Policy
	Frame Locking
	Replacement Algorithms
	Combined Examples
	Clock Policy
	Comparison of Algorithms
	Page Buffering
	Working Set Management
	Replacement Scope
	Fixed Allocation, Local Scope
	Variable Allocation, Global Scope
	Variable Allocation, Local Scope
	슬라이드 번호 51
	 Page Fault Frequency (PFF)
	Cleaning Policy
	Multiprogramming
	Process Suspension
	Unix
	UNIX SVR4 Memory Management Format
	UNIX SVR4 Memory Management Parameters
	UNIX SVR4 Memory Management Parameters
	Homework 7

