Communication Signals

(Haykin Sec. 2.1 - Sec. 2.2 and Ziemer Sec. 2.5) KECE321 Communication Systems I

Lecture #5, March 19, 2012 Prof. Young-Chai Ko

Review

- Generalized Fourier series
 - Integral-square error
- Complex exponential Fourier series

Summary of Today's Lecture

- Fourier transform
 - Definition
 - Continuous spectrum
 - Properties

Fourier Transform

Now we want to generalize the Fourier series to represent aperiodic signals using the Fourier series form given as

$$x(t) = \sum_{n = -\infty}^{\infty} X_n e^{jn\omega_0 t}, \quad t_0 \le t \le t + 0 + T_0$$
$$X_n = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} x(t) e^{-jn\omega_0 t} dt$$

- Consider non-periodic signal x(t) but is an energy signal.
 - In the interval $|t| < \frac{1}{2}T_0$, we can represent x(t) as

$$x(t) = \sum_{n = -\infty}^{\infty} \left[\frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(\lambda) e^{-j2\pi n f_0 \lambda} d\lambda \right] e^{jn2\pi n f_0 t}, \quad |t| < \frac{T_0}{2}$$

- where $f_0 = 1/T_0$.
- To represent x(t) for all time, we simply let $T_0 \to \infty$ such that

$$nf_0 = n/T_0 \to f$$
, $1/T_0 \to df$, $\sum_{n=-\infty}^{\infty} \to \int_{-\infty}^{\infty}$

Thus

$$x(t) = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} x(\lambda) e^{-j2\pi f \lambda} d\lambda \right] e^{j2\pi f t} df$$

Defining

$$X(f) = \int_{-\infty}^{\infty} x(\lambda)e^{-j2\pi f\lambda} d\lambda$$

we can rewrite

$$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft}df$$

Notations

$$X(f) = \mathcal{F}[x(t)]$$

$$x(t) = \mathcal{F}^{-1}[X(f)]$$

$$x(t) \iff X(f)$$

Amplitude and Phase Spectra

• Writing X(f) in phasor form:

$$X(f) = |X(f)|e^{j\theta(f)}, \quad \theta(f) = \angle X(f)$$

ullet we can show that for real x(t) , that

$$|X(f)| = |X(-f)|$$
 and $\theta(-f) = -\theta(f)$

This is done by Euler's theorem to write

$$R = \Re X(f) = \int_{-\infty}^{\infty} x(t)\cos(2\pi f t) dt$$

$$I = \Im X(f) = -\int_{-\infty}^{\infty} x(t)\sin(2\pi f t) dt$$

• Then, the square of amplitude and the phase are

$$|X(f)|^2 = R^2 + I^2, \quad \theta(f) = \tan^{-1}\left(\frac{I}{R}\right)$$

- ullet Amplitude spectrum: Plot of |X(f)| versus f
- ullet Phase spectrum: Plot of $\angle X(f)$ versus f

Example

Fourier transform of rectangular pulse $g(t) = A \operatorname{rect}\left(\frac{t}{T}\right)$ $G(f) = \int_{-\infty}^{\infty} g(t) \exp(-j2\pi ft) dt = A \int_{-T/2}^{T/2} A \exp(-j2\pi ft) dt$ $= -A \frac{1}{j2\pi f} \exp(-j2\pi ft) \Big|_{t=-T/2}^{t-1/2}$ $= -\frac{A}{i2\pi f} \left[-\exp(-j2\pi fT/2) - \exp(j2\pi fT/2) \right]$ $= \frac{A}{\pi f} \left(\frac{\exp(j\pi fT) - \exp(-j\pi fT)}{2i} \right)$ $= A \left(\frac{\sin(\pi f T)}{\pi f} \right)$

 $= AT \left(\frac{\sin(\pi f T)}{\pi f T} \right)$

 $AT\operatorname{sinc}(\pi fT)$

Sinc Function

Definition

$$\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$$

Fourier Transform of Rectangular Pulse

• Rectangular pulse with the width of T and the height of A so that the area is at the center of zero

Fourier Transform of Exponential Function

Exponential function such as

$$g(t) = \exp(-\alpha t)u(t)$$

Fourier transform

$$G(f) = \mathcal{F}[g(t)]$$

$$= \int_{-\infty}^{\infty} g(t)e^{-j2\pi ft} dt = \int_{0}^{\infty} e^{-(\alpha+j2\pi f)t} dt$$

$$= \frac{1}{\alpha+j2\pi f}$$

• Similarly for $g(t) = \exp(+\alpha t)u(-t)$

$$G(f) = \frac{1}{\alpha - j2\pi f}$$

Properties of Fourier Transform

- Linearity
- Dilation
- Conjugation rule
- Duality property
- Time shifting property
- Frequency shifting property
- Area property

- Differentiation in the time domain
- Modulation theorem
- Convolution theorem
- Correlation theorem
- Rayleigh's Energy theorem (or Parserval's theorem)

Properties of the Fourier Transform

Linearity (Superposition) property

Let
$$g_1(t) \Leftrightarrow G_1(f)$$
 and $g_2(t) \Leftrightarrow G_2(f)$

then for all constants c_1 and c_2

$$c_1g_1(t) + c_2g_2(t) \longleftrightarrow c_1G_1(f) + c_2G_2(f)$$

• Dilation property $g(at) \longleftrightarrow \frac{1}{|a|} G\left(\frac{f}{a}\right)$

• Proof:
$$\mathcal{F}\left[g(at)\right] = \int_{-\infty}^{\infty} g(at) \exp(-j2\pi ft) \, dt$$
 change of variable: $\tau = at$
$$= \frac{1}{a} \int_{-\infty}^{\infty} g(\tau) \exp\left[-j2\pi \left(\frac{f}{a}\right)\tau\right] \, d\tau$$

$$= \frac{1}{a} G\left(\frac{f}{a}\right)$$

Reflection property

$$g(-t) \longleftrightarrow G(-f)$$

EXAMPLE 2.3 Combinations of Exponential Pulses

Consider a double exponential pulse (defined by (see Fig. 2.6(a))

$$g(t) = \begin{cases} \exp(-at), & t > 0 \\ 1, & t = 0 \\ \exp(at), & t < 0 \end{cases}$$
$$= \exp(-a|t|) \tag{2.15}$$

This pulse may be viewed as the sum of a truncated decaying exponential pulse and a truncated rising exponential pulse. Therefore, using the linearity property and the Fourier-transform pairs of Eqs. (2.12) and (2.13), we find that the Fourier transform of the double exponential pulse of Fig. 2.6(a) is

$$G(f) = \frac{1}{a + j2\pi f} + \frac{1}{a - j2\pi f}$$
$$= \frac{2a}{a^2 + (2\pi f)^2}$$

We thus have the following Fourier-transform pair for the double exponential pulse of Fig. 2.6(a):

$$\exp(-a|t|) \Longrightarrow \frac{2a}{a^2 + (2\pi f)^2} \tag{2.16}$$

[Ref: Haykin & Moher, Textbook]

Figure 2.6 (a) Double-exponential pulse (symmetric). (b) Another double-exponential pulse (odd-symmetric).

Note that because of the symmetry in the time domain, as in Fig. 2.6(a), the spectrum is real and symmetric; this is a general property of such Fourier-transform pairs.

Another interesting combination is the difference between a truncated decaying exponential pulse and a truncated rising exponential pulse, as shown in Fig. 2.6(b). Here we have

$$g(t) = \begin{cases} \exp(-at), & t > 0 \\ 0, & t = 0 \\ -\exp(at), & t < 0 \end{cases}$$
 (2.17)

We may formulate a compact notation for this composite signal by using the signum function that equals +1 for positive time and -1 for negative time, as shown by

$$sgn(t) = \begin{cases} +1, & t > 0 \\ 0, & t = 0 \\ -1, & t < 0 \end{cases}$$
 (2.18)

The signum function is shown in Fig. 2.7. Accordingly, we may reformulate the composite signal g(t) defined in Eq. (2.17) simply as

$$g(t) = \exp(-a|t|) \operatorname{sgn}(t)$$

Hence, applying the linearity property of the Fourier transform, we readily find that in light of Eqs. (2.12) and (2.13), the Fourier transform of the signal g(t) is given by

$$F[\exp(-a|t|) \operatorname{sgn}(t)] = \frac{1}{a+j2\pi f} - \frac{1}{a-j2\pi f}$$
$$= \frac{-j4\pi f}{a^2 + (2\pi f)^2}$$

We thus have the Fourier-transform pair

$$\exp(-a|t|)\operatorname{sgn}(t) \Longrightarrow \frac{-j4\pi f}{a^2 + (2\pi f)^2}$$
 (2.19)

In contrast to the Fourier-transform pair of Eq. (2.16), the Fourier transform in Eq. (2.19) is odd and purely imaginary. It is a general property of Fourier-transform pairs that apply to an odd-symmetric time function, which satisfies the condition g(-t) = -g(t), as in Fig. 2.6(b); such a time function has an odd and purely imaginary function as its Fourier transform.

Conjugation rule

Let $g(t) \longleftrightarrow G(f)$, then for a complex-valued time function g(t)

$$g^*(t) \longleftrightarrow G^*(-f)$$

Prove this:

$$g(t) = \int_{-\infty}^{\infty} G(f) \exp(j2\pi f t) df$$

$$g^*(t) = \int_{-\infty}^{\infty} G^*(f) \exp(-j2\pi f t) df$$

$$g^{*}(t) = -\int_{-\infty}^{\infty} G^{*}(-f) \exp(j2\pi f t) df$$
$$= \int_{-\infty}^{\infty} G^{*}(-f) \exp(j2\pi f t) df$$

$$g^*(-t) \longleftrightarrow G^*(f)$$

Duality property

If
$$g(t)\longleftrightarrow G(f)$$
, then $G(t)\longleftrightarrow g(-f)$
$$g(-t)=\int_{-\infty}^\infty G(f)\exp(-j2\pi ft)\,df$$

which can be expanded part in going from the time domain to the frequency domain:

$$g(-f) = \int_{-\infty}^{\infty} G(t) \exp(-j2\pi ft) dt$$

Example of Dual Property: Sinc Pulse

• We have the following pair of the Fourier transform:

$$g(t) = A\operatorname{sinc}(2Wt) \longleftrightarrow G(f) = \frac{A}{2W}\operatorname{rect}\left(\frac{f}{2W}\right)$$

• Then, if the time function, given as

$$h(t) = G(t) = \frac{A}{2W} \operatorname{rect}\left(\frac{t}{2W}\right) \longleftrightarrow H(f) = g(-f) = A \operatorname{sinc}(-2Wf) = A \operatorname{sinc}(2Wf)$$

Time shifting property

If
$$g(t) \longleftrightarrow G(f)$$
 , then $g(t-t_0) \longleftrightarrow G(f) \exp(-j2\pi f t_0)$

Frequency shifting property

If
$$g(t) \longleftrightarrow G(f)$$
, then $\exp(j2\pi f_c t)g(t) \longleftrightarrow G(f-f_c)$

ullet Area property under g(t)

If
$$g(t) \longleftrightarrow G(f)$$
 , then

$$\int_{-\infty}^{\infty} g(t) \, dt = G(0)$$

Example of Frequency Shifting Property

Find the FT of radio frequency pulse given as

$$g(t) = \operatorname{rect}\left(\frac{t}{T}\right)\cos(2\pi f_c t)$$

Using the Euler's formula we have

$$\cos(2\pi f_c t) = \frac{1}{2} \left[\exp(2\pi f_c t) + \exp(-j2\pi f_c t) \right]$$

Then using the frequency shifting property of the Fourier transform we get the desired result:

$$\operatorname{rect}\left(\frac{t}{T}\right)\cos(2\pi f_c t) \longleftrightarrow \frac{T}{2}\left\{\operatorname{sinc}\left[T(f-f_c)\right] + \operatorname{sinc}\left[T(f+f_c)\right]\right\}$$

[Ref: Haykin & Moher, Textbook]

• In the special case of $f_cT>>1$, that is, the frequency f_c is large compared to the reciprocal of the pulse duration T - we may use the approximate result

$$G(f) = \begin{cases} \frac{T}{2} \operatorname{sinc}[T(f - f_c)], & f > 0\\ 0, & f = 0,\\ \frac{T}{2} \operatorname{sinc}[T(f + f_c)], & f < 0 \end{cases}$$

• Area property under G(f)

$$g(0) = \int_{-\infty}^{\infty} G(f) \, df$$

• Differentiation in the time domain

If
$$g(t) \longleftrightarrow G(f)$$
 , then
$$\frac{d}{dt}g(t) \longleftrightarrow j2\pi fG(f)$$

and

$$\frac{d^n}{dt^n}g(t)\longleftrightarrow (j2\pi f)^nG(f)$$

Modulation theorem

Let
$$g_1(t) \longleftrightarrow G_1(f)$$
, and $g_2(t) \longleftrightarrow G_2(f)$, then

$$g_1(t)g_2(t) \longleftrightarrow \int_{-\infty}^{\infty} G_1(\lambda)G_2(f-\lambda) d\lambda$$

Convolution Theorem

$$\int_{-\infty}^{\infty} g_1(\tau)g_2(t-\tau) d\tau \longleftrightarrow G_1(f)G_2(f)$$

$$g_1(t) * g_2(t) \longleftrightarrow G_1(f)G_2(f)$$

Correlation theorem

$$\int_{-\infty}^{\infty} g_1(\tau)g_2^*(t-\tau) d\tau \longleftrightarrow G_1(f)G_2^*(f)$$

Rayleigh's Energy theorem

$$\int_{-\infty}^{\infty} |g(t)|^2 dt = \int_{-\infty}^{\infty} |G(f)|^2 df$$

Example 2.9 Sinc Pulse (continued)

Consider again the sinc pulse A sinc (2Wt). The energy of this pulse equals

$$E = A^2 \int_{-\infty}^{\infty} \operatorname{sinc}^2(2Wt) dt$$

The integral in the right-hand side of this equation is rather difficult to evaluate. However, we note from Example 2.4 that the Fourier transform of the sinc pulse $A \operatorname{sinc}(2Wt)$ is equal to $(A/2W) \operatorname{rect}(f/2W)$; hence, applying Rayleigh's energy theorem to the problem at hand, we readily obtain the desired result:

$$E = \left(\frac{A}{2W}\right)^2 \int_{-\infty}^{\infty} \text{rect}^2\left(\frac{f}{2W}\right) df$$

$$= \left(\frac{A}{2W}\right)^2 \int_{-W}^{W} df$$

$$= \frac{A^2}{2W}$$
(2.57)

[Ref: Haykin & Moher, Textbook]