Communication Signals

(Haykin Sec. 2.1 - Sec. 2.2 and Ziemer Sec. 2.5)
KECE321 Communication Systems I

Lecture #5, March 19, 2012
Prot. Young-Chai Ko
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Review

®m Generalized Fourier series
Integral-square error

®m  Complex exponential Fourier series




Fourier transform

Definition

Continuous spectrum

Properties

Summary of Today’s Lecture

<

A

- Singular functions
- Fourier series

= ourier tr‘anslorm >
—

- Linear time-invariant system
- Impulse (system) response
- Convolution

- Revisit to Fourier transform

4 ~ 5 weeks

\ 4

Modulation
Demodulation

- Amplitude modulation

- Phase modulation

- Frequency modulation

- Delta/Pulse code modulation

A

Il ~ 12 weeks

\ 4




Fourier Transform

Now we want to generalize the Fourier series to represent aperiodic signals using the

Fourier series form given as

p(t)= ) Xpe™' tg <t <t+0+Tp
n=—00
1 to+T0o . ,
X, = —/ x(t)e "0 dt
m
Consider non-periodic signal =(¢) but is an energy signal.
. 1
In the interval [t| < §T 0 , we can represent z(t) as
oo 1 T0/2 . . TO
x(t) = —/ :B()\)e_ﬂ”"fo)‘ d\ | edm2mnfot it < —
n:Z—oo TO _TO/2 2

- Wwhere fo=1/T.

To represent x(t) for all time, we simply let 7, — co such that

nfO:n/TO%fv 1/TO—>df7 Z —>/OO

n=——oo




Thus

we can rewrite

o) = [ X(petay

l’(t) —>| Fourier Transform —> X(f)

X (f) > Inverse Fourier > x(t)

Transform
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® Notations

X(f) = Fla(t)]




Amplitude and Phase Spectra

Writing X (f) in phasor form:
X(f) = XN, 0(f) = £X(f)

we can show that for real Z(t) , that
X ()] =1X(=f) and O(—f) = —0(f)

This is done by Euler’s theorem to write

R

||
=
>
=
||

/OO x(t) cos(27m ft) dt
I = SX(f) = —/OO o(1) sin(27 f1t) dt

Then, the square of amplitude and the phase are

X(OP =R+ o) = an (3
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® Amplitude spectrum: Plot of | X (f)| versus f

® Phase spectrum: Plot of ZX (f) versus [
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Example

® Fourier transform of rectangular pulse g(t) = A rect (%)
o T/2
G(f) = / g(t)exp(—j2n ft) dt = A/ Aexp(—j2m ft) di
o T2
. t=T/2
= —A Xp(—72m
o p(—j27 ft) —
A
_ ot |—exp(—j2n fT/2) — exp(j2m fT/2)]
_ A (exp(ijT) —exp(—jwa)>
7 f 27
_ 4 SiIl(’]TfT))
(et
B sin(m fT)
- A ( " fT )

= ATsinc(w fT)
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Definition

Ficurre 2.3

Sinc Function

sinc (A)
1.0

The sinc function.

[Ref: Haykin & Moher, Textbook]
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Fourier Transform of Rectangular Pulse

Rectangular pulse with the width of T and the height of A so that the area is
at the center of zero

IG(f)l

Al (%) «— ATsinc(fT)

AT

| I

, /\/\/\V\/\/\f
P

g(t)

0 0 | 2

b2~
o[~

=)=

L
LS e
(ad) ([7)

FIGURE 2.2 (a) Rectangular pulse. (b) Amplitude spectrum.

[Ref: Haykin & Moher, Textbook]
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Fourier Transform of Exponential Function

® Exponential function such as
g(t) = exp(—at)u(t)

® Fourier transform

G(f) = Flg)
—j2m ft dt = —(a+j2mf)t d
/ g(t)e t /0 e ¢

— OO

1
a—+ j2nf
e Similarly for g(t) = exp(+at)u(—t)
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Properties of Fourier Transform

® Linearity ® Differentiation in the time
domain

® Dilation
® Modulation theorem

® Conjugation rule
® Convolution theorem

® Duality property
® Correlation theorem

® Time shifting property
® Rayleigh’s Energy theorem (or

® Frequency shifting property Parserval’s theorem)

® Area property
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Properties of the Fourier Transform

® Linearity (Superposition) property

Let g (1) < G,(f)and g,(1) < G,(f)
then for all constants ¢; and ¢y

c191(t) + c2g2(t) +— c1G1(f) + c2Ga(f)

® Dilation property

g(at) <— ;G(%)

Flg(at)]

® Proof:

/OO g(at) exp(—j2m ft) dt

— O

change of variable:T = at
1 ©. @)
= —/ g(T) exp [—j27r (i) T] dr
a ) . a
1
_ g (i)
a a

n
W
I
©
ne
fli
0

ne

14



® Reflection property

g(—t) +— G(—f)
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ExampLE 2.3 Combinations of Exponential Pulses

Consider a double exponential pulse (defined by (see Fig. 2.6(a))

(exp(—at), t >0
gt) =41, t =0
L exp(at), i<

= exp(—alt|) (2.15)

This pulse may be viewed as the sum of a truncated decaying exponential pulse and a truncated
rising exponential pulse. Therefore, using the linearity property and the Fourier-transform
pairs of Egs. (2.12) and (2.13), we find that the Fourier transform of the double exponential
pulse of Fig. 2.6(a) is

1 1
G e
() gt 2uf a-—jlmf
24
a’ + (2wf)>

We thus have the following Fourier-transform pair for the double exponential pulse of
Fig. 2.6(a):
2a

exp(—alt])) = ST (777/;-)«5 (2.16)

[Ref: Haykin & Moher, Textbook]
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£(?)

1 1 ‘
=T (@) a
g(2)
1.0
4
0
—-1.0
(b)

FiIGURE 2.6 (a) Double-exponential pulse (symmetric). (&) Another double-exponential
pulse (odd-symmetric).
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Note that because of the symmetry in the time domain, as in Fig. 2.6(a), the spectrum is real
and symmetric; this is a general property of such Fourier-transform pairs.

Another interesting combination is the difference between a truncated decaying expo-
nential pulse and a truncated rising exponential pulse, as shown in Fig. 2.6(b). Here we have

exp( —at), =0
g(t) =40, t =20 (2.17)
—exp(at), f< 0

We may formulate a compact notation for this composite signal by using the signum function
that equals +1 for positive time and —1 for negative time, as shown by

£l g0
sgn(t) = § 0, t =0 (2.18)
=1 t <0
FIGURE 2.7  Signum function.

e

Ml

©
ne
I
0
no

18



The signum function is shown in Fig. 2.7. Accordingly, we may reformulate the composite sig-
nal g(t) defined in Eq. (2.17) simply as

g(t) = exp(—alt|) sgn(z)

Hence, applying the linearity property of the Fourier transform, we readily find that in light
of Egs. (2.12) and (2.13), the Fourier transform of the signal g(¢) is given by

1 1
Fl e —alt )] = —— — -
[pr( al I) Sgn( )j a _+_ 1277_/‘ a — Izﬂf
—j47f
a4 (27f)?
We thus have the Fourier-transform pair
—j4f

exp(—alt]) sgn(t) =— — (2.19)

ad" T (Zﬂf)"

In contrast to the Fourier-transform pair of Eq. (2.16), the Fourier transform in Eq. (2.19) 1s
odd and purely imaginary. It is a general property of Fourier-transform pairs that apply to an
odd-symmetric time function, which satisfies the condition g(—¢) = —g(t), as in Fig. 2.6(b);
such a time function has an odd and purely imaginary function as its Fourier transform.

e

Ml

©
ne
I
0
no

19



Conjugation rule

Let ¢(t) <— G(f),then for a complex-valued time function 9(t)

g (t) «— G (=f)

Prove this: o(t) = f G(f)exp(j2nft)df
fG )exp(-j2nft)df
' (f) = - LOG (=) exp(j2mft)df
= [ G'(=/)exp(j2nft)df

g (=t) «— G"(f)

124 3% 19 &l

20



® Duality property
If 9(t) < G(f), then G(t) +— g(—f)

o0 = [ " GUf) expl(—j2nft) df

— 0

which can be expanded part in going from the time domain to the frequency
domain:

g(=f) = [ G(0)exp(- j2nfi)d
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Example of Dual Property: Sinc Pulse

We have the following pair of the Fourier transform:

g(t) = Asinc(2Wt) +— G(f) = %rect (%)

Then, if the time function, given as

G(t) = i1"ect ( : ) «—— H(f) =g(—f) = Asinc(—2W f) = A sinc(2W f)

oW oW
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a
property und
er
g(t)

If g(t) «— G(f)
, then
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Example of Frequency Shifting Property

® Find the FT of radio frequency pulse given as
t

g(t) = rect (T) cos(2m f.t)
Using the Euler’s formula we have

cos(2r fut) = % exp(27 fut) + exp(—j 27 fut)

Then using the frequency shifting property of the Fourier transform we get the
desired result:

t T . .
rect <—) cos(2m fot) +— 5 {sinc|T'(f — fe)] + sinc|T(f + f.)]}

T
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FIGURE 2.9
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(@) RF pulse

g1

S
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of unit amplitude and duration T. (&) Amplitude spectrum.

[Ref: Haykin & Moher, Textbook]
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In the special case of f.T" >> 1, that is, the frequency f. is large compared

°
to the reciprocal of the pulse duration 7" - we may use the approximate

result
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® Area property under G(f)

® Differentiation in the time domain

If g(t) «— G(f),then

d

Zg(t) «— j21/G(f)

and

dt_"g(t> > (j2r f)"G(f)
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Modulation theorem

Let g1(1) «— G1(f), and ga(t) <— G2(f), then

01 (1) ga (1) ——s /OO GV Ga(f — A) d

Convolution Theorem

/ O; g1(7)ga(t — 7) le s Gi(f)Ca(f)

g1(t) * g2(t) «— G1(f)Ga(f)
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® Correlation theorem

/ T Mgt — ) dr s GLHGI)

® Rayleigh’s Energy theorem

[ leora= [ i6@rd

— 00 — 00
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Exampere 2.9  Sinc Pulse (continued)

Consider again the sinc pulse A sinc (2Wt). The energy of this pulse equals

B Al/ sinc(2Wt) dt

. OO0

The integral in the right-hand side of this equation is rather difficult to evaluate. However, we
note from Example 2.4 that the Fourier transform of the sinc pulse A sinc(2W¢) is equal to

(A/2W) rect(f/2W); hence, applying Rayleigh’s energy theorem to the problem at hand, we
readily obtain the desired result:

(4] el

[Ref: Haykin & Moher, Textbook]
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