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Summary of Today’s Lecture 

Signal Classification

Basic Continuous-Time Signals

Singular functions

Signals

- Signal classification
- Singular functions
- Fourier series
- Fourier transform

LTI
Systems

- Linear time-invariant system
- Impulse (system) response
- Convolution
- Revisit to Fourier transform

Modulation
Demodulation

- Amplitude modulation
- Phase modulation
- Frequency modulation
- Delta/Pulse code modulation

4 ~ 5 weeks 11 ~ 12 weeks
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Signal	 Classification

Continuous-Time and Discrete-Time signals

Analog and Digital signals

Real and Complex signals

Deterministic and Random signals

Even and Odd signals

Periodic and Nonperiodic signals

Energy and Power signals
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Continuous-Time	 and	 Discrete-Time	 Signals

Continuous-time	 signals

- A	 signal	 	 	 	 	 	 	 is	 continuous-time	 if	 	 	 is	 a	 continuous	 variable.	 	 

Discrete-time	 signals

- If	 	 	 	 is	 a	 discrete	 variable,	 that	 is,	 	 	 	 	 	 	 is	 defined	 at	 discrete	 times,	 then	 	 	 	 	 	 	 is	 
a	 discrete-time	 signal.	 

- Since	 a	 discrete	 time	 is	 defined	 at	 discrete	 times	 such	 as	 	 	 	 	 	 	 	 	 	 ,	 a	 discrete-time	 
signal	 is	 often	 identified	 as	 a	 sequence	 of	 numbers,	 denoted	 by	 	 	 	 	 	 	 or	 	 	 	 	 	 	 	 	 	 	 	 

tx(t)

x(t)t x(t)

t = nT
{xn} x[n]
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Continuous-Time	 and	 Discrete-Time	 Signals
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Analog	 and	 Digital	 Signals

Analog	 signals

Digital	 signals

Analog	 signals	 to	 Digital	 signals

Sampling Quantization

x[n] 2 {q1, q2, · · · , qn}

�1 < x(t) < 1

x(t) x[n]
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Real	 and	 Complex	 Signals

Real	 signal

- If	 	 	 	 	 	 	 	 takes	 real	 number,	 it	 is	 a	 real	 signal

Complex	 signal

- Questions	 for	 fun	 

‣ Is the complex signal real?

‣ Does there really exist an imaginary part?

x(t)

x(t) = x1(t) + jx2(t)
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Even	 and	 Odd	 Signals

Even	 signal	 if	 

Odd	 signal	 if	 

0 t 

0 t 

x(t) x(t) 

x(�t) = x(t)

x(�t) = �x(t)
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Any	 signal	 	 	 	 	 	 	 can	 be	 expressed	 as	 a	 sum	 of	 even	 and	 odd	 signals:

Even	 part	 and	 odd	 part	 of	 

x(t)

x(t) = x

e

(t) + x

o

(t)

x

e

(t) =
1

2
{x(t) + x(�t)}

x

o

(t) =
1

2
{x(t)� x(�t)}
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Periodic	 and	 Nonperiodic	 Signals

·•Periodic	 signal	 with	 period	 	 	 	 	 if	 	 

·•Fundamental	 period	 

- smallest	 positive	 value	 of	 	 	 	 	 

T

x(t+ T ) = x(t) for all t

T0

T

T = mT0 for any integer m
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Energy	 and	 Power	 Signals

Energy	 of	 continuous	 time	 signal	 	 	 	 	 	 	 is	 defined	 as

Normalized	 average	 power	 is	 defined	 as

	 	 	 	 	 	 is	 an	 energy	 signal	 if	 and	 only	 if

	 	 	 	 	 	 is	 a	 power	 signal	 if	 and	 only	 if	 

E =

Z 1

�1
|x(t)|2 dt

P = lim
T!1

1

T

Z 1

�1
|x(t)|2 dt

x(t)

x(t)

0 < E < 1

x(t)

0 < P < 1
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Phasor Signals and Spectra

A useful periodic signal in system analysis is the complex signal

     amplitude

     frequency in radian per second or

     phase in radians

We refer to          as a rotating phasor to distinguish from the phasor       .  

We can show that                                 with                                     . Thus          is periodic 
signal with period 

x̃(t) = Ae

j(!0t+✓)
, �1 < t < 1

A :

!0 : f0 = !0/2⇡ hertz

✓0 :

x̃(t) = x̃(t+ T0) T0 = 2⇡/!0 = 1/f0 x̃(t)
T0 = 1/f0.

x̃(t) ej✓
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A rotating phasor                     can be related to a real, sinusoidal signal                           
in two ways.

The first is by taking its real part, 

The second is by taking one-half of the sum of          and its complex conjugate,

Aej(!0t+✓) A cos(!0t+ ✓)

x(t) = A cos(!0t+ ✓) = <[x̃(t)]
= <[Aej(!0t+✓)

]

x̃(t)

A cos(!0t+ ✓) =

1

2

x̃(t) +

1

2

x̃

⇤
(t)

=

1

2

Ae

j(!0t+✓)
+

1

2

Ae

�j(!0t+✓)
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Let                                         . Then we showed that 

Two equivalent representation of          in the frequency domain may be obtained 
by noting that the rotating phasor signal is completely specified if the 
parameters,      and    , are given for a particular     .

Thus plots of the magnitude and angle of           versus frequency gives sufficient 
information to characterize          completely. 

x(t) = A cos(!0t+ ✓)

x(t) = <[x̃(t)] = 1

2
x̃(t) + x̃

⇤(t)

x(t)

A ✓ f0

Aej✓

x(t)

f0�f0 0

1

2
A

Amplitude

f f0

�f0
0 f

phase

✓

�✓

f

✓

f0

f0

Amplitude

phase

f

Double-sided spectra
Single-sided spectra
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Example 1, Sketch the single-sided spectra of 

We note that          can be written as 

x(t) = 2 sin

✓
10⇡t� 1

6
⇡

◆
.

x(t)

x(t) = 2 cos

✓
10⇡t� 1

6

⇡ � 1

2

⇡

◆
= 2 cos

✓
10⇡t� 2

3

⇡

◆

= <
h
2e

j(10⇡t�2⇡/3)
i
= e

j(10⇡t�2⇡/3)
+ e

�j(10⇡t�2⇡/3)
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f
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Example 2, If more than one sinusoidal component is present in a signal, its spectra 
consists of multiple lines. For example, the signal 

can be written as

y(t) = 2 sin

✓
10⇡t� 1

6

⇡

◆
+ cos(20⇡t)

y(t) = 2 cos

✓
10⇡t� 2

3

⇡

◆
+ cos(20⇡t)

= <
h
2ej(10⇡t�2⇡/3)

+ ej20⇡t
i

= ej(10⇡t�2⇡/3)
+ e�j(10⇡t�2⇡/3)

+

1

2

ej20⇡t +
1

2

e�j20⇡t

f
5 10�10 �5 0

1

0.5

5 10
�10 �5 0

�2⇡/3

2⇡/3

Amplitude

phase
f

Amplitude

phase

f

2

5

5

10

1

�2⇡/3
10

12년	 3월	 7일	 수요일



Singular	 Functions

Unit	 step	 function

Unit	 impulse	 function	 (Dirac	 delta	 function)

Signum	 function	 (which	 will	 be	 discussed	 later	 on)
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Unit	 Step	 Function

Definition

Shifted	 unit	 step	 function

1 

u(t) u( t-t 
0  
) 

0 t 
0 0 t t 

(a) (b) 

u(t) =

⇢
1, t > 0
0, t < 0

u(t� t0) =

⇢
1, t > t0
0, t < t0

u(t� t0)
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Unit Impulse Function (Dirac Delta Function)

Rectangular pulse

Consider the rectangular pulse given as 

Now consider                 in which case the area is still 1.

rect

✓
t

T

◆
=

⇢
1, �T

2 < t < T
2

0, elsewhere
�T

2

T

2

1

0

rect

✓
t

T

◆

g(t) =
1

2✏
rect

✓
t

2✏

◆
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Z 1
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Also consider the Gaussian pulse given as

We can prove that          has a unit area, that is, 

Now if we take                ,           is in narrower gaussian pulse shape 
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We define Dirac delta function as a function which has the property  of                   
(or                  in the Gaussian pulse)  and denote it as         .

Definition of Dirac delta (or unit impulse) function         

By considering the special case                and                 for              and            ,  the 
following two properties are obtained:

lim
✏!0

g(t)
�(t)

Z 1

�1
x(t)�(t) dt = x(0)

Z 1

�1
x(t)�(t� t0) dt = x(t0)or

where        is any continuous function at time  t = 0 where        is any continuous function at time  t = t0x(t)
x(t)

x(t) = 1 x(t) = 0 t < t1 t > t2

Z t2

t1

�(t� t0) dt = 1, t1 < t < t2

�(t� t0) = 0, t 6= t0

and
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Some properties of the delta function
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