GEST 011, Newton's Clock \& Heisenberg's Dice, Fall 2013

The

 Story

Mahn-Soo Choi (Korea University) October 5, 2013 (v5.1)

하나,둘,셋,넷,다섯,여섯,일곱,여덟,아홉,열,열하나,열둘, \cdots one,two,three,four,five,six,seven,eight,nine,ten,eleven,twelve,...

하나,둘,셋,넷,다섯,여섯,일곱,여덟,아홉,열,열하나,열둘, \cdot. one,two,three,four,five,six,seven,eight,nine,ten,eleven,twelve,... $1,2,3,4,5,6,7,8,9,10,11,12, \cdots$

The Number Zero (0)

WHM MuM M

하나,둘,셋,넷,다섯,여섯,일곱,여덟,아홉,열,열하나,열둘, \cdots
one,two,three,four, five,six,seven,eight, nine,ten, eleven, twelve, . .

$$
\begin{gathered}
\text { 1,2,3,4,5,6,7,8,9,10,11,12,... } \\
\text { 십, 백, 천, 만; 억, 조, 경, } \ldots \\
10,100,1000,10000,10^{8}, 10^{12}, 10^{16}, \ldots
\end{gathered}
$$

European American

$3^{\text {rd }}$	$4^{\text {th }}$	floor
$2^{\text {nd }}$	$3^{\text {rd }}$	floor
$1^{\text {st }}$	$2^{\text {nd }}$	floor
ground	$1^{\text {st }}$	floor
$1^{\text {st }}$	$1^{\text {st }}$	basement floor
$2^{\text {nd }}$	$2^{\text {nd }}$	basement floor
$3^{\text {rd }}$	$3^{\text {rd }}$	basement floor
\cdots	\cdots	

Negative Numbers

European	American	
\ldots	\ldots	
$3^{\text {rd }}$	$4^{\text {th }}$	floor
$2^{\text {nd }}$	$3^{\text {rd }}$	floor
$1^{\text {st }}$	$2^{\text {nd }}$	floor
ground	$1^{\text {st }}$	floor
$1^{\text {st }}$	$1^{\text {st }}$	basement floor
$2^{\text {nd }}$	$2^{\text {nd }}$	basement floor
$3^{\text {rd }}$	$3^{\text {rd }}$	basement floor
\cdots	\cdots	

π and Circle

π, The Definition

$$
\pi=\frac{(\text { circumference })}{(\text { diameter })}
$$

π, The Definition

$$
\pi=\frac{(\text { circumference })}{(\text { diameter })}
$$

π, The Definition

$$
\pi=\frac{(\text { circumference })}{(\text { diameter })}
$$

π, Its Value

3.1415926535897932384626433 8327950288419716939937510 5820974944592307816406286 208998628034825342117068

Wikipedia

Angle with π

http://www.popular.com.sg/

$$
\theta=\frac{2}{5} \times 180^{\circ}=72^{\circ}
$$

Angle with π

(Radian)

π and Rotation

The Imaginary Number i

$$
\begin{array}{lll}
x^{2}=1 & \Rightarrow & x=? \\
x^{2}=4 & \Rightarrow & x=? \\
x^{2}=9 & \Rightarrow & x=? \\
x^{2}=144 & \Rightarrow x=? \\
x^{2}=150 & \Rightarrow x=?
\end{array}
$$

Square \& Square Root \sqrt{x}

$$
\begin{array}{lll}
x^{2}=1 & \Rightarrow & x=\sqrt{1}=1 \\
x^{2}=4 & \Rightarrow & x=\sqrt{4}=2 \\
x^{2}=9 & \Rightarrow & x=\sqrt{9}=3 \\
x^{2}=144 & \Rightarrow & x=\sqrt{144}=12 \\
x^{2}=150 & \Rightarrow & x=\sqrt{150} \approx 12.2474
\end{array}
$$

$$
\begin{array}{ll}
\quad x^{2}=-1 & \Rightarrow x=? \\
x^{2}=-4 & \Rightarrow x=? \\
x^{2}=-9 & \Rightarrow x=? \\
x^{2}=-144 & \Rightarrow x=? \\
x^{2}=-150 & \Rightarrow x=?
\end{array}
$$

The Imaginary Number i

$$
\left.\begin{array}{lll}
& ? & x^{2}=-1
\end{array}\right) \quad x=i
$$

The Set of Complex Numbers

(1+i=2

Addition

$$
\text { ? } \quad 1+i=?
$$

$$
\begin{aligned}
(1+x)+(2+3 x) & =3+4 x \\
3(1+2 x) & =3+6 x
\end{aligned}
$$

Addition

$$
\text { ? } \quad 1+i=?
$$

$$
\begin{aligned}
(1+i)+(2+3 i) & =3+4 i \\
3(1+2 i) & =3+6 i
\end{aligned}
$$

$$
\text { 1) }(1+\lambda)(1-2)=2
$$

Multiplication

$$
\text { ? }(1+i)(1-2 i)=\text { ? }
$$

$$
(1+i)(1-2 i)=1 \cdot 1+i \cdot 1+1 \cdot(-2 i)+i \cdot(-2 i)
$$

Multiplication

$$
\begin{aligned}
& ?(1+i)(1-2 i)=? \\
& (1+i)(1-2 i)=3-i
\end{aligned}
$$

$$
\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right)=x_{1} x_{2}-y_{1} y_{2}+i\left(x_{1} y_{2}+x_{2} y_{1}\right)
$$

Complex Plane

Definition (Conjugate)

$$
\begin{aligned}
\mathbb{C} & \rightarrow \mathbb{R}^{2} \\
z \equiv x+i y & \mapsto(x, y)
\end{aligned}
$$

Definition (Magnitude)

$$
|z| \equiv \sqrt{x^{2}+y^{2}}=\sqrt{z z^{*}}
$$

Definition (Polar Form)

$$
z=r(\cos \theta+i \sin \theta)
$$

i and Rotation

$$
\begin{aligned}
& x(\theta)=\cos (\theta) \\
& y(\theta)=\sin (\theta)
\end{aligned}
$$

$$
\begin{gathered}
x(\theta)=\cos (\theta) \\
y(\theta)=\sin (\theta) \\
z(\theta)=\cos (\theta)+i \sin (\theta)
\end{gathered}
$$

i and Rotation II

$$
\begin{gathered}
z_{3}=z_{1} z_{2} \\
\theta_{3}=\theta_{1}+\theta_{2}
\end{gathered}
$$

Geometry by Complex Numbers

> (product of complex numbers)

$$
\begin{aligned}
\left|z_{1} z_{2}\right| & =\left|z_{1}\right|\left|z_{2}\right| \\
\arg \left(z_{1} z_{2}\right) & =\arg \left(z_{1}\right)+\arg \left(z_{2}\right)
\end{aligned}
$$

i and Rotation III

(De Moivre's formula)

$$
\begin{aligned}
{[\cos \theta} & +i \sin \theta]^{n} \\
& =\cos (n \theta)+i \sin (n \theta)
\end{aligned}
$$

i and Rotation III

(De Moivre's formula)

$[\cos \theta+i \sin \theta]^{n}$
$=\cos (n \theta)+i \sin (n \theta)$

$$
\begin{aligned}
\left|z^{n}\right| & =|z|^{n} \\
\arg \left(z^{n}\right) & =n \arg (z)
\end{aligned}
$$

The Mathematical Constant e

$$
e \equiv \lim _{N \rightarrow \infty}\left(1+\frac{1}{N}\right)^{N}
$$

Compounded Interest

Let W_{0} be the amount of money originally invested, and x the annual rate of interest. How mouch do you earn after one year?

■ When the interest is compounded yearly?

$$
W_{0} \rightarrow W_{0}(1+x)
$$

Compounded Interest

Let W_{0} be the amount of money originally invested, and x the annual rate of interest. How mouch do you earn after one year?

■ When the interest is compounded yearly?

$$
W_{0} \rightarrow W_{0}(1+x)
$$

■ When the interest is compounded every half a year?

$$
W_{0} \rightarrow W_{0}(1+x / 2)^{2}
$$

Compounded Interest

Let W_{0} be the amount of money originally invested, and x the annual rate of interest. How mouch do you earn after one year?

■ When the interest is compounded yearly?

$$
W_{0} \rightarrow W_{0}(1+x)
$$

- When the interest is compounded every half a year?

$$
W_{0} \rightarrow W_{0}(1+x / 2)^{2}
$$

■ When the interest is compounded quarterly?

$$
W_{0} \rightarrow W_{0}(1+x / 4)^{4}
$$

Compounded Interest

Let W_{0} be the amount of money originally invested, and x the annual rate of interest. How mouch do you earn after one year?

■ When the interest is compounded yearly?

$$
W_{0} \rightarrow W_{0}(1+x)
$$

- When the interest is compounded every half a year?

$$
W_{0} \rightarrow W_{0}(1+x / 2)^{2}
$$

■ When the interest is compounded quarterly?

$$
W_{0} \rightarrow W_{0}(1+x / 4)^{4}
$$

■ When the interest is compounded monthly?

$$
W_{0} \rightarrow W_{0}(1+x / 12)^{12}
$$

Compounded Interest

Let W_{0} be the amount of money originally invested, and x the annual rate of interest. How mouch do you earn after one year?

■ When the interest is compounded yearly?

$$
W_{0} \rightarrow W_{0}(1+x)
$$

- When the interest is compounded every half a year?

$$
W_{0} \rightarrow W_{0}(1+x / 2)^{2}
$$

■ When the interest is compounded quarterly?

$$
W_{0} \rightarrow W_{0}(1+x / 4)^{4}
$$

■ When the interest is compounded monthly?

$$
W_{0} \rightarrow W_{0}(1+x / 12)^{12}
$$

\square When the interest is compounded daily?

$$
W_{0} \rightarrow W_{0}(1+x / 365)^{365}
$$

$$
\begin{aligned}
& (1+1)^{1}=2 \\
& \left(1+\frac{1}{2}\right)^{2}=2.25 \\
& \left(1+\frac{1}{3}\right)^{3}=\frac{64}{27} \approx 2.37 \\
& \left(1+\frac{1}{4}\right)^{4}=\frac{625}{256} \approx 2.44
\end{aligned}
$$

The Mathematical Constant e

$$
\begin{aligned}
& (1+1)^{1}=2 \\
& \left(1+\frac{1}{2}\right)^{2}=2.25 \\
& \left(1+\frac{1}{3}\right)^{3}=\frac{64}{27} \approx 2.37 \\
& \left(1+\frac{1}{4}\right)^{4}=\frac{625}{256} \approx 2.44
\end{aligned}
$$

$$
e \equiv \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \approx 2.71828
$$

The Exponential Function $\exp (x)$

$$
\exp (x) \equiv \lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}
$$

The Exponential Function $\exp (x)$

The Exponential Function $\exp (x)$

$$
\begin{gathered}
e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3 \cdot 2 \cdot 1}+\frac{x^{4}}{4 \cdot 3 \cdot 2 \cdot 1}+\cdots \\
e^{a+b}=e^{a} e^{b}
\end{gathered}
$$

$$
\frac{d x}{d t}=x \quad \Leftrightarrow \quad x(t)=e^{t}
$$

$$
e^{x}=y \quad \Leftrightarrow \quad x=\log y
$$

π, i, e

Euler's Formula

(the deep relation among " π ", " e ", " i ")

$$
e^{i \varphi}=\cos \varphi+i \sin \varphi
$$

We summarize with this, the most remarkable formula in mathematics

$$
e^{i \varphi}=\cos \varphi+i \sin \varphi
$$

This is our jewel.
(Feynman, Leighton \& Sands 1989, Section 22-6)

Complex Plane

(Revisited)

Definition (Conjugate)

$$
z^{*}=x-i y
$$

Definition (Magnitude)

$$
|z| \equiv \sqrt{x^{2}+y^{2}}=z z^{*}
$$

Definition (Polar Form)

$$
z=r(\cos \theta+i \sin \theta)
$$

Complex Plane

(Revisited)

Definition (Conjugate)

$$
z \equiv x+i y \mapsto(x, y)
$$

$$
z^{*}=x-i y
$$

Definition (Magnitude)

$$
|z| \equiv \sqrt{x^{2}+y^{2}}=z z^{*}
$$

Definition (Polar Form)

$$
z=r e^{i \theta}
$$

Geometry by Complex Numbers

(phasors)

$$
\begin{gathered}
\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right| \\
\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right) \\
r_{1} e^{i \theta_{1}} r_{2} e^{i \theta_{2}}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}
\end{gathered}
$$

Rotation, Oscillation, and Wave

Rotation

$$
\begin{gathered}
\theta=\omega t \\
\omega=\text { "angular frequency" }
\end{gathered}
$$

$■$ It rotates \square radian per one second.
■ It takes \square seconds per one rotation.

Rotation

$$
\begin{gathered}
\theta=\omega t \\
\omega=\text { "angular frequency" } \\
z(t)=\exp (i \omega t) \equiv e^{i \omega t} \\
\omega=\text { "angular frequency" }
\end{gathered}
$$

■ It rotates \square radian per one second.
■ It takes \square seconds per one rotation.

Rotation

$$
\begin{gathered}
\theta=\omega t \\
\omega=\text { "angular frequency" } \\
z(t)=\exp (i \omega t) \equiv e^{i \omega t} \\
\omega=\text { "angular frequency" }
\end{gathered}
$$

- It rotates ω radian per one second.
- It takes $2 \pi / \omega$ seconds per one rotation.

Oscillation in Time

$$
\begin{gathered}
x(t)=\cos (\omega t) \\
y(t)=\sin (\omega t) \\
z(t)=\exp (i \omega t) \\
\omega=\text { "angular frequency" }
\end{gathered}
$$

■ It rotates \square radian per one second.

- It takes \square seconds per one rotation.

Oscillation in Time

$$
\begin{gathered}
x(t)=\cos (\omega t) \\
y(t)=\sin (\omega t) \\
z(t)=\exp (i \omega t) \\
\omega=\text { "angular frequency" }
\end{gathered}
$$

- It rotates ω radian per one second.
- It takes $2 \pi / \omega$ seconds per one rotation.

Oscillation in Space

$$
\begin{gathered}
x(t)=\cos (k x) \\
y(t)=\sin (k x) \\
z(t)=\exp (i k x) \\
k=\text { "wave number" }
\end{gathered}
$$

- It rotates \square radian per one meter.

■ It takes \square meters per one rotation.

Oscillation in Space

$$
\begin{gathered}
x(t)=\cos (k x) \\
y(t)=\sin (k x) \\
z(t)=\exp (i k x) \\
k=\text { "wave number" }
\end{gathered}
$$

- It rotates k radian per one meter.

■ It takes $2 \pi / k$ meters per one rotation.

Wave

$$
\begin{aligned}
& \psi(z, t)=\exp [i(\omega t-k z)] \\
& \omega=\text { "angular frequency" } \\
& k=\text { "wave number" }
\end{aligned}
$$

- It rotates \square radian per one second.
- It rotates \square radian per one meter.
- It takes \square seconds per one rotation.
■ It takes \square meters per one rotation.

Wave

$$
\begin{aligned}
& \psi(z, t)=\exp [i(\omega t-k z)] \\
& \omega=\text { "angular frequency" } \\
& k=\text { "wave number" }
\end{aligned}
$$

- It rotates ω radian per one second.
- It rotates k radian per one meter.

■ It takes $2 \pi / \omega$ seconds per one rotation.

- It takes $2 \pi / k$ meters per one rotation.

Summary

■ π, i, e share the same spirit.
■ Rotation, oscillation, and wave are essentially the same.
$\square \sin (\theta), \cos (\theta)$, and $\exp (i \theta)$ are essentially the same.

References

R. Feynman, R. B. Leighton \& M. L. Sands, The feynman lectures on physics, Vol. I (Addison-Wesley, Redwood City, 1989).
D. Halliday, R. Resnick \& J. Walker, Fundamentals of physics, 7th (John Wiley and Sons, Inc, New York, 2005).

