
Microprocessor Microarchitecture

Branch Prediction

Lynn Choi

School of Electrical Engineering

Branch

 Branch Instruction distribution (% of dynamic instruction count)

 24% of integer SPEC benchmarks

 5% of FP SPEC benchmarks

 Among branch instructions

 80% conditional branches

 Issues

 In early pipelined architecture,

 Before fetching next instruction,

 Branch target address has to be calculated

 Branch condition need to be resolved for conditional branches

 Instruction fetch & issue stalls until the target address is determined,

resulting in pipeline bubbles

Solution

 Resolve the branch as early as possible

 Branch Prediction

 Predict branch condition & branch target

 A simple solution

 PC <- PC + 4: implicitly prefetch the next sequential instruction assuming branch

is not taken

 On a misprediction, the pipeline has to be flushed,

 Example

 With 10% misprediction rate, 4-issue 5-stage pipeline will waste ~23% of

issue slots!

 With 5% misprediction rate, 13% of issue slots will be wasted.

 Speculative execution

 Before branch is resolved, the instructions from the predicted path are fetched

and executed

 We need a more accurate prediction to reduce the misprediction penalty

 As pipelines become deeper and wider, the importance of branch misprediction

will increase substantially!

Branch Misprediction Flush Example

1 LD R1 <- A

2 LD R2 <- B

3 MULT R3, R1, R2

4 BEQ R1, R2, TARGET

5 SUB R3, R1, R4

6 ST A <- R3

7 TARGET: ADD R4, R1, R2

F D R E E

F D R E E

F D R R E

F D D R E

F D R

W

W

E E E W

F

W

F

E W

D R E W

Branch Target is known

F D R E W

F D R E W

Speculative execution:

These instructions will be flushed

on branch misprediction

Branch Prediction

 Branch condition prediction
 For conditional branches

 Branch Predictor - cache of execution history

 Predictions are made even before the branch is decoded

 Branch target prediction
 Branch Target Buffer (BTB)

 Store target address for each branch

 Fall-through address is PC +4 for most branches

 Combined with branch condition prediction (2-bit saturating counter)

 Target Address Cache

 Stores target address for only taken branches

 Separate branch prediction tables

 Return stack buffer (RSB)

 Stores return address for procedure call

 Also called return address buffers (RAB)

RSB Misprediction Rates versus Size

Branch Target Buffer

Branch Instruction

Address

Branch Prediction

Statistics

Branch Target

Address
.

.

.

.

.

.

.

.

.

 For BTB to make a correct prediction, we need

 BTB hit: the branch instruction should be in the BTB

 Prediction hit: the prediction should be correct

 Target match: the target address must not be changed from the last time

 Example: BTB hit ratio of 96%, 97% prediction hit, 1.2% of target change,

The overall prediction accuracy = 0.96 * 0.97 *0.988 = 92%

 Implementation: Accessed with VA and need to be flushed on context switch

Branch Target Buffer

 Should we store target address for both taken and not-taken

branches?

 How about storing instructions rather than target addresses?

 Branch folding

 Store one or more target instructions instead of, or in addition to the

predicted target address

 Advantages

 On a BTB hit and if the branch is unconditional, the pipeline can

substitute the instruction from the BTB in place of the instruction from

the cache

 For highly predictable conditional branches, you can do the same

 This allows 0-cycle unconditional branches and sometimes 0-cycle

conditional branches

 Or, it allows BTB access to take longer than the time between successive

instruction fetches, allowing a larger BTB

Static Branch Prediction

 Assume all branches are taken
 60% of conditional branches are taken

 Opcode information
 Backward Taken and Forward Not-taken scheme

 Quite effective for loop-bound programs

 Miss once for all iterations of a loop

 Does not work for irregular branches

 69% prediction hit rate

 Profiling
 Measure the tendencies of the branches and preset a static prediction bit in

the opcode

 Sample data sets may have different branch tendencies than the actual data
sets

 92.5% hit rate

 Static predictions are used as safety nets when the dynamic
prediction structures need to be warmed up

Dynamic Branch Prediction

 Dynamic schemes- use runtime execution history
 LT (last-time) prediction - 1 bit, 89%

 Bimodal predictors - 2 bit

 2-bit saturating up-down counters (Jim Smith), 93%

 Several different state transition implementations

 Branch Target Buffer(BTB)

 Static training scheme (A. J. Smith), 92 ~ 96%

 Use both profiling and runtime execution history

 Statistics collected from a pre-run of the program

 A history pattern consisting of the last n runtime execution results of

the branch

 Two-level adaptive training (Yeh & Patt), 97%

 First level, branch history register (BHR)

 Second level, pattern history table (PHT)

Bimodal Predictor

S(I): State at time I

G(S(I)) -> T/F: Prediction decision function

E(S(I), T/N) -> S(I+1): State transition function

Performance: A2 (usually best), A3, A4 followed by A1 followed by LT

IEEE All rights reserved

Bimodal Predictor Structure

PC

2b counter arrays

11 Predict taken

A simple array of counters (without

tags) often has better performance

for a given predictor size

Two-level adaptive predictor

 Motivated by
 Two-bit saturating up-down counter of BTB (J. Smith)

 Static training scheme (A. Smith)

 Profiling + history pattern of last k occurences of a branch

 Organization
 Branch history register (BHR) table

 Indexed by instruction address (Bi)

 Branch history of last k branches

 Local predictor: The last k occurrences of the same branch (Ri,c-kRi,c-

k+1….Ri,c-1)

 Global predictor: The last k branches encountered

 Implemented by k-bit shift register

 Pattern history table (PT)

 Indexed by a history pattern of last k branches

 Prediction function z = (Sc)

 Prediction is based on the branch behavior for the last s occurrences of the
pattern

 State transition function Sc+1 = (Sc, Ri,c)

 2b saturating up-down counter

Structure of 2-level adaptive predictor

IEEE All rights reserved

Global vs. Local History

 Global history schemes

 The last k conditional branches encountered

 Works well when the direction taken by sequentially executed branches is

highly correlated

 EX) if (x >1) then .. If (x<=1) then ..

 These are also called correlating predictors

 Local history schemes

 The last k occurrences of the same branch

 Works well for branches with simple repetitive patterns

 Two types of contention

 Branch history may reflect a mix of histories of all the branches that map to the

same history entry

 With 3 bits of history, cannot distinguish patterns of 0110 and 1110

 However, if the first pattern is executed many times then followed by the

second pattern many times, the counters can dynamically adjust

Local History Structure

PC

Counts

11 Predict taken

110

History

Global History Structure

GHR

2b counter arrays

11 Predict taken

Global/Local/Bimodal Performance

IEEE All rights reserved

Global Predictors with Index Sharing

 Global predictor with index selection (gselect)

 Counter array is indexed with a concatenation of global history and branch

address bits

 For small sizes, gselect parallels bimodal prediction

 Once there are enough address bits to identify most branches, more global

history bits can be used, resulting in much better performance than global

predictor

 Global predictor with index sharing (gshare)

 Counter array is indexed with a hashing (XOR) of the branch address and

global history

 Eliminate redundancy in the counter index used by gselect

Gshare vs. Gselect

Branch

Address

Global

History

Gselect

4/4

Gshare

8/8

00000000 00000001 00000001 00000001

00000000 00000000 00000000 00000000

11111111 00000000 11110000 11111111

11111111 10000000 11110000 01111111

Gshare/Gselect Structure

PC

11 Predict taken

GHR

XOR

n

m

n
m

n m+n

gselect

gshare

Global History with Index Sharing Performance

IEEE All rights reserved

Combined Predictor Structure

 These are also called tournament predictors

 Adaptively combine global and local predictors

IEEE All rights reserved

Combined Predictor Performance

IEEE All rights reserved

Exercises and Discussion

 Intel’s Xscale processor uses bimodal predictor? What state

would you initialize?

 Y/N Questions. Explain why.

 Branch prediction is more important for FP applications. (Y/N) Why or Why

not?

 Branch prediction is more difficult for conditional branches than indirect

branches. (Y/N) Why or Why not?

 To predict branch targets, an instruction must be decoded first. (Y/N) Why or

Why not?

 RSB stores target address of call instructions. (Y/N) Why or Why not?

 At the beginning of program execution, static branch prediction is more

effective than dynamic branch prediction (Y/N) Why or Why not?

