Communication Systems II

[KECE322_OI]
<2012-2nd Semester>

Lecture \#| I
2012.10.8
School of Electrical Engineering
Korea University
Prof. Young-Chai Ko

Outline

- Matched filter
- Optimum detection for binary antipodal signals
- M-ary PAM
- M-ary orthogonal signals

Example of binary PPM

- Binary PPM signals

$$
s_{m}(t)=s_{m 1} \psi_{1}(t)+s_{m 2} \psi_{2}(t), \quad j=1,2
$$

$$
\begin{aligned}
& s_{11}=\int_{0}^{T_{b}} s_{1}(t) \psi_{1}(t) d t=\sqrt{E_{b}} \\
& s_{12}=\int_{0}^{T_{b}} s_{1}(t) \psi_{2}(t) d t=0 \\
& s_{21}=\int_{0}^{T_{b}} s_{2}(t) \psi_{1}(t) d t=0 \\
& s_{22}=\int_{0}^{T_{b}} s_{2}(t) \psi_{2}(t) d t=\sqrt{E_{b}}
\end{aligned}
$$

- Matched filter

$$
h_{1}(t)=\psi_{1}\left(T_{b}-t\right), \quad h_{2}(t)=\psi_{2}\left(T_{b}-t\right)
$$

If $s_{1}(t)$ is transmitted, the sampled output signals are

$$
\mathbf{y}=\left[y_{1}, y_{2}\right]=\left[\sqrt{E_{b}}+n_{1}, n_{2}\right]
$$

where $\quad n_{k}=\int_{0}^{T_{b}} n(t) \psi_{k}(t) d t$ with $n_{k} \sim \mathcal{N}\left(0, \frac{N_{0}}{2}\right)$

Output SNR for the first matched filter

$$
\left(\frac{S}{N}\right)_{o}=\frac{\left(\sqrt{\mathcal{E}_{b}}\right)^{2}}{N_{0} / 2}=\frac{2 \mathcal{E}_{b}}{N_{0}}
$$

Performance of the Optimum Receiver: Binary Antipodal Signals

Output of the demodulator in any signal bit interval

$$
y=s_{m}+n, \quad m=1,2
$$

- Decision rule
- If $y>\alpha$, declare $s_{1}(t)$ was transmitted.
- If $y<\alpha$, declare $s_{2}(t)$ was transmitted.

Average probability of error

$$
P_{2}(\alpha)=P\left(s_{1}\right) \int_{-\infty}^{\alpha} f\left(y \mid s_{1}\right) d y+P\left(s_{2}\right) \int_{\alpha}^{\infty} f\left(y \mid s_{2}\right) d y
$$

- Not we want to find the optimum threshold value α, say α^{*} which minimizes the average probability of error.
- Optimum threshold can by finding the solution of $\frac{d P_{2}(\alpha)}{d \alpha}=\left.0\right|_{\alpha=\alpha^{*}}$ That is,

$$
P\left(s_{1}\right) f\left(\alpha \mid s_{1}\right)-P\left(s_{2}\right) f\left(\alpha \mid s_{2}\right)=0
$$

or equivalently,

$$
\frac{f\left(\alpha \mid s_{1}\right)}{f\left(\alpha \mid s_{2}\right)}=\frac{P\left(s_{2}\right)}{P\left(s_{1}\right)}
$$

Since $f\left(\alpha \mid s_{m}\right)$ is Gaussian PDF with mean $\sqrt{\mathcal{E}_{b}}$ for s_{1} and $-\sqrt{\mathcal{E}_{b}}$ for s_{2}, we have

$$
e^{-\left(\alpha-\sqrt{\mathcal{E}_{b}}\right)^{2} / N_{0}} e^{-\left(\alpha+\sqrt{\mathcal{E}_{b}}\right)^{2} / N_{0}}=\frac{P\left(s_{2}\right)}{P\left(s_{1}\right)}
$$

- Clearly, the optimum value of the threshold is

$$
\alpha^{*}=\frac{N_{0}}{4 \sqrt{\mathcal{E}_{b}}} \ln \frac{P\left(s_{2}\right)}{P\left(s_{1}\right)}
$$

For the case of $P\left(s_{1}\right)=P\left(s_{2}\right)$, the optimum threshold is zero. In this case, the average probability of error is

$$
\begin{aligned}
P_{2} & =\frac{1}{2} \int_{-\infty}^{0} f\left(y \mid s_{1}\right) d y+\frac{1}{2} \int_{0}^{\infty} f\left(y \mid s_{2}\right) d y=\int_{-\infty}^{0} f\left(y \mid s_{1}\right) d y \\
& =\frac{1}{\sqrt{\pi N_{0}}} \int_{-\infty}^{0} e^{-\left(y-\sqrt{\mathcal{E}_{b}}\right)^{2} / N_{0}} d y
\end{aligned}
$$

Change of the variable as $x=\left(y-\sqrt{\mathcal{E}_{b}}\right) / \sqrt{N_{0} / 2}$

$$
P_{2}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{-\sqrt{2 \mathcal{E}_{b} / N_{0}}} e^{-x^{2} / 2} d x=Q\left(\sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}\right)
$$

Technique of BER/SER Calculation

Assume a certain signal was transmitted, say $s_{1}(t)$

Calculate the conditional error probability, $P_{2}\left(e \mid s_{1}\right)$

Check if all the conditional probabilities are equal, that is, $P_{2}\left(e \mid s_{1}\right)=P_{2}\left(e \mid s_{2}\right)$, Then the average probability of error is

$$
P_{2}=P_{2}\left(e \mid s_{1}\right) P\left(s_{1}\right)+P_{2}\left(e \mid s_{2}\right) P\left(s_{2}\right)
$$

For equally probable case, that is, $P\left(s_{1}\right)=P\left(s_{2}\right)=1 / 2$

$$
P_{2}=\frac{1}{2}\left(P_{2}\left(e \mid s_{1}\right)+P_{2}\left(e \mid s_{2}\right)\right)=P_{2}\left(e \mid s_{1}\right)
$$

Performance of Binary Orthogonal Signals

- Dimensionality of binary orthogonal signals
- Two-dimensional transmit signals can be written as

$$
\begin{gathered}
s_{m}(t)=s_{m 1} \phi_{1}(t)+s_{m 2} \phi_{2}(t) \\
\mathbf{s}_{m}=\left[\begin{array}{ll}
s_{m 1} & s_{m 2}
\end{array}\right], \quad m=1,2
\end{gathered}
$$

- The output of the demodulator is also two-dimensional

$$
\mathbf{y}=\left[\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right]
$$

- If $s_{1}(t)$ is transmitted, the demodulator outputs are

$$
\begin{aligned}
y_{1} & =\mathcal{E}_{b}+n_{1} \\
y_{2} & =n_{2}
\end{aligned}
$$

- where n_{1} and n_{2} are statistically independent and identically distributed (I.I.D.) Gaussian random variable with zero mean and variance $\sigma_{n}^{2}=N_{0} / 2$.
- If $s_{1}(t)$ is transmitted,

- If $s_{2}(t)$ is transmitted,

- Decision rule to minimize the average probability of error
- Compare y_{1} with y_{2}
- If $y_{1}>y_{2}$ (equivalently $y_{1}-y_{2}>0$), declare $s_{1}(t)$ was transmitted.
\downarrow Otherwise, declare $s_{2}(t)$ was transmitted.
- Probability of error
- Assuming $s_{1}(t)$ is transmitted, the error occurs when $y_{1}-y_{2}<0$.
- Let

$$
z=y_{1}-y_{2}=\sqrt{\mathcal{E}_{b}}+n_{1}-n_{2}
$$

- Then we can shown

$$
z \sim \mathcal{N}\left(\sqrt{\mathcal{E}_{b}}, N_{0}\right) \quad \Longrightarrow \quad f(z)=\frac{1}{\sqrt{2 \pi N_{0}}} e^{-\left(z-\sqrt{\mathcal{E}_{b}}\right)^{2} / 2 N_{0}}
$$

- Average probability of error

$$
\begin{aligned}
P_{2}=P(z<0) & =\int_{-\infty}^{0} f(z) d z \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\sqrt{\mathcal{E}_{b} / N_{0}}} e^{-x^{2} / 2} d x=Q\left(\sqrt{\frac{\mathcal{E}_{b}}{N_{0}}}\right)
\end{aligned}
$$

M-ary Pulse Modulation

- M-ary modulation
- The binary sequence is subdivided into blocks of k bits, called symbols, and each block (or symbol) is represented by one of $M=2^{k}$ signal waveforms, each of duration of T.
- Symbol (or signaling) rate
- The number of signals (or symbols) transmitted per second

$$
R_{s}=\frac{1}{T} \quad \text { symbols } / \mathrm{sec}
$$

- Bit rate

$$
R_{b}=k R_{s}=\frac{k}{T} \quad \mathrm{bits} / \mathrm{sec}
$$

- Bit interval

$$
T_{b}=\frac{1}{R_{b}}=\frac{T}{k}
$$

M-ary Pulse Amplitude Modulation (PAM)

- M-ary signal waveforms

$$
\begin{aligned}
& s_{m}(t)=A_{m} g_{T}(t), \quad 0 \leq t \leq T, \quad m=1,2, \ldots, M \\
& =s_{m} \psi(t) \quad \text { where } s_{m}=A_{m} \sqrt{T}
\end{aligned}
$$

- Energy of each symbol

$$
\mathcal{E}_{m}=\int_{0}^{T} s_{m}^{2}(t) d t=s_{m}^{2} \int_{0}^{T} \psi^{2}(t) d t=s_{m}^{2}=A_{m}^{2} T
$$

Average energy

$$
\mathcal{E}_{a v}=\frac{1}{M} \sum_{m=1}^{M} \mathcal{E}_{m}=\frac{T}{M} \sum_{m=1}^{M} A_{m}^{2}
$$

- Signal amplitude

$$
A_{m}=(2 m-1-M) A, \quad m=1,2, \ldots, M
$$

- Signal amplitudes are symmetric about the origin and equally spaced by which there is no DC component and the average transmitted energy can be minimized.
- Average energy

$$
\mathcal{E}_{a v}=\frac{A^{2} T}{M} \sum_{m=1}^{M}(2 m-1-M)^{2}=\frac{A^{2} T\left(M^{2}-1\right)}{3}
$$

- Signal constellation

$$
\begin{aligned}
s_{m} & =A_{m} \sqrt{T}=A \sqrt{T}(2 m-1-M) \\
& =(2 m-1-M) d, \quad m=1,2, \ldots, M
\end{aligned}
$$

where we define $d=A \sqrt{T}$

M-ary Orthogonal Signals

■ Orthogonality condition for $\left\{s_{m}(t)\right\}_{m=1}^{M}$

$$
\int_{0}^{T} s_{i}(t) s_{j}(t) d t=0, \quad i \neq j
$$

- Signal waveform expression

$$
s_{m}(t)=\sqrt{\mathcal{E}_{s}} \psi_{m}(t), \quad m=1,2, \ldots, M
$$

For PPM,

$$
\psi_{m}(t)=g_{T}\left(t-\frac{(m-1) T}{M}\right), \quad \frac{(m-1) T}{M} \leq t \leq \frac{m T}{M}
$$

For frequency shift keying,

$$
\psi_{m}(t)=\sqrt{\frac{2}{T}} \cos (2 \pi m t), \quad m=1,2, \ldots, M
$$

- Dimensionality of M-ary orthogonal signals
- Dimensionality is M
- Energy

$$
\int_{0}^{T} s_{m}^{2}(t) d t=\mathcal{E}_{s} \int_{0}^{T} \psi_{m}^{2}(t) d t=\mathcal{E}_{s}, \quad \text { all } m
$$

- Geometrical expression

$$
\begin{aligned}
\mathbf{s}_{1} & =\left(\sqrt{\mathcal{E}_{s}}, 0,0, \ldots, 0\right) \\
\mathbf{s}_{2} & =\left(0, \sqrt{\mathcal{E}_{s}}, 0, \ldots, 0\right) \\
& \vdots \\
\mathbf{s}_{M} & =\left(0,0,0, \ldots, \sqrt{\mathcal{E}_{s}}\right)
\end{aligned}
$$

Euclidean distance between M signal vectors are mutually equidistant, i.e.,

$$
d_{m n}=\sqrt{\left\|\mathbf{s}_{m}-\mathbf{s}_{n}\right\|^{2}}=\sqrt{2 \mathcal{E}_{s}}, \text { for all } m \neq n
$$

Example of 4-PAM

Average energy

$$
\mathcal{E}_{a v}=5 A^{2} T=5 d^{2} \quad \text { where } d^{2}=A^{2} T
$$

