GEST 011, Newton's Clock \& Heisenberg's Dice, Fall 2013

The Principia

(Philosophiae Naturalis Principia Mathematica)

Mahn-Soo Choi (Korea University)

 October 7, 2013 (v 5.10)
PHILOSOPHIÆ

 N A TuRALIS PRINCIPIA
MATHEMATICA.

Autore ㄱ S. NEWTO N, Trin.' Coll. Cantab. Soc. Mathefeos Profeffore Lucafiano, \& Societatis Regalis Sodali.

IMPRIMATUR.
S. P E P Y S, Reg. Soc. P R Æ S E S. Fulii 5. 1686.
LONDINI,

Juffi Societatis Regie ac Typis Fofephi Streater. Proftat apud plures Bibliopolas. Anmo MDCLXXXVII.

[^0]
What Is Motion?

Zeno's Arrow Paradox

Zeno of Elea, "The object at each moment is at a fixed position."

How can it then move?

What is "motion"?
How to "describe" it?

Sir Isaac Newton (1643-1727) Explains how to describe motion

Minimum Requirements

Reference Frame

Reference Frame

Time

Time

What is time?

Two Methods
To Describe Motion

Recording the Position

(as a function of time)

Using "Rate"

(amount of change per unit time)

$$
\bar{v}=\frac{x\left(t_{2}\right)-x\left(t_{1}\right)}{t_{2}-t_{1}}=\frac{\Delta x}{\Delta t}
$$

Using "Rate"

(amount of change per unit time)

$$
\begin{aligned}
\bar{v} & =\frac{x\left(t_{2}\right)-x\left(t_{1}\right)}{t_{2}-t_{1}}=\frac{\Delta x}{\Delta t} \\
v\left(t_{1}\right) & =\lim _{t_{2} \rightarrow t_{1}} \frac{x\left(t_{2}\right)-x\left(t_{1}\right)}{t_{2}-t_{1}}=\frac{d x}{d t} \\
a\left(t_{1}\right) & =\lim _{t_{2} \rightarrow t_{1}} \frac{v\left(t_{2}\right)-v\left(t_{1}\right)}{t_{2}-t_{1}}=\frac{d v}{d t}
\end{aligned}
$$

Using "Rate"

(amount of change per unit time)

$$
\begin{aligned}
\bar{v} & =\frac{x\left(t_{2}\right)-x\left(t_{1}\right)}{t_{2}-t_{1}}=\frac{\Delta x}{\Delta t} \\
v\left(t_{1}\right) & =\lim _{t_{2} \rightarrow t_{1}} \frac{x\left(t_{2}\right)-x\left(t_{1}\right)}{t_{2}-t_{1}}=\frac{d x}{d t} \\
a\left(t_{1}\right) & =\lim _{t_{2} \rightarrow t_{1}} \frac{v\left(t_{2}\right)-v\left(t_{1}\right)}{t_{2}-t_{1}}=\frac{d v}{d t}
\end{aligned}
$$

Table of Derivatives

$x(t)$	$\Rightarrow \frac{d x}{d t}$
1	$\Rightarrow 0$
t	$\Rightarrow 1$
t^{2}	$\Rightarrow 2 t$
t^{n}	$\Rightarrow n t^{n-1} \quad(n \in \mathbb{Z})$
$\sin (t)$	$\Rightarrow+\cos (t)$
$\cos (t)$	$\Rightarrow-\sin (t)$
$\exp (t)$	$\Rightarrow \exp (t)$

How to "Predict" the Motion
$($ force $)=($ mass $) \times($ acceleration $)$

$$
(\text { force })=(\text { mass }) \times(\text { acceleration })
$$

$$
F=m \frac{d v}{d t}
$$

$$
(\text { force })=(\text { mass }) \times(\text { acceleration })
$$

$$
F=m \frac{d v}{d t} \quad F=m \frac{d}{d t} \frac{d x}{d t}
$$

Equation of Motion

(Newton's 2nd Law of Motion)

$$
(\text { force })=(\text { mass }) \times(\text { acceleration })
$$

$$
F=m \frac{d v}{d t} \quad F=m \frac{d}{d t} \frac{d x}{d t} \quad F=m \frac{d^{2} x}{d t^{2}}
$$

$$
(\text { force })=(\text { mass }) \times(\text { acceleration })
$$

$$
\begin{gathered}
F=m \frac{d v}{d t} \quad F=m \frac{d}{d t} \frac{d x}{d t} \quad F=m \frac{d^{2} x}{d t^{2}} \\
x(t)=?
\end{gathered}
$$

How to solve the equation?

How to Solve an Equation

(algebraic equation)

$$
\begin{aligned}
x+3=10 & \Rightarrow x=? \\
5 x=30 & \Rightarrow x=? \\
x^{2}=144 & \Rightarrow x=? \\
10^{x}=1000 & \Rightarrow x=? \\
e^{x}=1 & \Rightarrow x=?
\end{aligned}
$$

How to Solve an Equation

 (algebraic equation)$$
\begin{aligned}
& x+3=10 \Rightarrow x=10-3 \\
& 5 x=30 \Rightarrow x=\frac{30}{5} \\
& x^{2}=144 \Rightarrow x=\sqrt{144} \\
& 10^{x}=1000 \Rightarrow \\
& e^{x}=1 \Rightarrow \quad x=\log _{10} 1000 \\
& e^{x}=\log _{e} 1=\log 1
\end{aligned}
$$

Table of Derivatives

$x(t)$	$\Rightarrow \frac{d x}{d t}$
1	$\Rightarrow 0$
t	$\Rightarrow 1$
t^{2}	$\Rightarrow 2 t$
t^{n}	$\Rightarrow n t^{n-1} \quad(n \in \mathbb{Z})$
$\sin (t)$	$\Rightarrow+\cos (t)$
$\cos (t)$	$\Rightarrow-\sin (t)$
$\exp (t)$	$\Rightarrow \exp (t)$

$$
\begin{aligned}
& \frac{d x}{d t}=0 \quad \Rightarrow \quad x(t)=? \\
& \frac{d x}{d t}=1 \quad \Rightarrow \quad x(t)=? \\
& \frac{d x}{d t}=2 \quad \Rightarrow \quad x(t)=? \\
& \frac{d x}{d t}=t \quad \Rightarrow \quad x(t)=? \\
& \frac{d x}{d t}=3 t \quad \Rightarrow \quad x(t)=? \\
& \frac{d x}{d t}=x \quad \Rightarrow \quad x(t)=?
\end{aligned}
$$

$$
\begin{aligned}
\frac{d x}{d t}=0 & \Rightarrow \quad x(t)=C \\
\frac{d x}{d t}=1 & \Rightarrow \quad x(t)=t+C \\
\frac{d x}{d t}=2 \quad & \Rightarrow x(t)=2 t+C \\
\frac{d x}{d t}=t & \Rightarrow \quad x(t)=\frac{1}{2} t^{2}+C \\
\frac{d x}{d t}=3 t \quad & \Rightarrow \quad x(t)=\frac{3}{2} t^{2}+C \\
\frac{d x}{d t}=x \quad & \Rightarrow \quad x(t)=C \exp (t)
\end{aligned}
$$

How to Solve an Equation

(differential equation)

$$
m \frac{d v}{d t}=m g
$$

How to Solve an Equation

(differential equation)

$$
m \frac{d v}{d t}=m g, \quad \frac{d v}{d t}=g
$$

How to Solve an Equation

(differential equation)

$$
m \frac{d v}{d t}=m g, \quad \frac{d v}{d t}=g, \quad v(t)=g t+v_{0}
$$

How to Solve an Equation

(differential equation)

$$
\begin{aligned}
& m \frac{d v}{d t}=m g, \quad \frac{d v}{d t}=g, \quad v(t)=g t+v_{0} \\
& \frac{d x}{d t}=g t+v_{0}
\end{aligned}
$$

How to Solve an Equation

(differential equation)

$$
\begin{aligned}
& m \frac{d v}{d t}=m g, \quad \frac{d v}{d t}=g, \quad v(t)=g t+v_{0} \\
& \frac{d x}{d t}=g t+v_{0}, \quad x(t)=\frac{1}{2} g t^{2}+v_{0} t+x_{0}
\end{aligned}
$$

How to Solve an Equation

(differential equation)

$$
\begin{aligned}
& m \frac{d v}{d t}=m g, \quad \frac{d v}{d t}=g, \quad v(t)=g t+v_{0} \\
& \frac{d x}{d t}=g t+v_{0}, \quad x(t)=\frac{1}{2} g t^{2}+v_{0} t+x_{0}
\end{aligned}
$$

We need to measure two quantities x_{0} and v_{0} to predict the future of the motion.

State

"State"

(in dictionaries)

Image from
http://apple.com/

Image from
the particular condition that someone or something is in at a specific time
mode or condition of being

State of Mind

http://petshopbox.com/

State of Mind

http://petshopbox.com/

State of Matter

State of Matter

http://www.chem.ufl.edu/~itl/
Pressure, Volume, Density, Temperature, ...

State of Dice and Pennies

http://stores.auction.co.kr/

http://www.canstockphoto.com/

State of Dice and Pennies

Face head, tail
http://stores.auction.co.kr/

$$
\text { Pips } \quad 1,2,3,4,5,6
$$

State of Flying Particle

http://demonstrations.wolfram.com/

State of Flying Particle

Mass	3	kg
Charge	0	C
Energy	5	J
Horizontal position	5	m
Vertical position	7	m
Horizontal velocity	5	$\mathrm{~m} / \mathrm{s}$
Vertical velocity	8	$\mathrm{~m} / \mathrm{s}$
Horizontal acceleration	5	m
Vertical acceleration	7	m
$\quad \vdots$	\vdots	

State of Flying Particle

Mass	3	kg
Charge	0	C
Energy	5	J
Horizontal position	5	m
Vertical position	7	m
Horizontal velocity	5	$\mathrm{~m} / \mathrm{s}$
Vertical velocity	8	$\mathrm{~m} / \mathrm{s}$
Horizontal acceleration	5	m
Vertical acceleration	7	m
$\quad \vdots$	\vdots	

State of Flying Hammer

Graphic by Sndor Kabai /
http://demonstrations.wolfram.com/

State of Flying Hammer

Graphic by Sndor Kabai /
http://demonstrations.wolfram.com/

State of Flying Hammer

Graphic by Sndor Kabai /
http://demonstrations.wolfram.com/

State of a Particle in Motion

(Classical Mechanics)

- Position r \& Velocity v
- Newton's equation of motion $($ force $)=($ mass $) \times($ acceleration $)$

$$
\boldsymbol{F}=m \frac{d \boldsymbol{v}}{d t}=m \frac{d^{2} \boldsymbol{r}}{d t^{2}}
$$

Sir Isaac Newton (1643-1727)

The Prinicipia Mathematica

Principia probant, non probantur. (Principles prove; they are not proved.)

Fundamental principles require no proof; they are assumed a priori.

The Prinicipia Mathematica

(Newton laws of motion)

Newton's $1^{\text {st }}$ Law
If no net force acts on a body, the body's velocity cannot change.

The Prinicipia Mathematica

(Newton laws of motion)

Newton's $1^{\text {st }}$ Law

If no net force acts on a body, the body's velocity cannot change.

Newton's $2^{\text {nd }}$ Law

The net force on a body is equal to the product of the body's mass and its acceleration:

$$
(\text { force })=(\text { mass }) \times(\text { acceleration })
$$

The Prinicipia Mathematica

Newton's $1^{\text {st }}$ Law

If no net force acts on a body, the body's velocity cannot change.

Newton's $2^{\text {nd }}$ Law

The net force on a body is equal to the product of the body's mass and its acceleration:

$$
(\text { force })=(\text { mass }) \times(\text { acceleration })
$$

Newton's $3^{\text {rd }}$ Law

When two bodies interact, the forces on the bodies from each other are always in magnitude and opposite in direction.

The Structure of Theory

Theory in Math

- Axioms

■ Definitions
■ Theorems
For logical arguments and efficient organization of thoughts.

The Structure of Theory

Theory in Physics

■ Axioms ("Laws", "Principles")
■ Definitions ("Interpretations")
■ Theorems ("Laws", "Principles")

- Interpretations
- Experimental tests
* Analogies

For fundamental understanding of nature and natural phenomena.

One of the Most Beautiful Theories!

Self-containing
Self-consistent
Beautiful structure

[^0]: Left image courtesy of Manchaster Libraries

