GEST 011, Newton's Clock & Heisenberg's Dice, Fall 2013

The Principia (Philosophiae Naturalis Principia Mathematica)

Mahn-Soo Choi (Korea University)

October 7, 2013 (v5.10)

Image from http://katolisitas.org/ (freely available for nonprofit usage)

PHILOSOPHIÆ NATURALIS PRINCIPIA MATHEMATICA

Autore J S. NEWTON, Trin. Coll. Cantab. Soc. Mathefeos Profeffore Lucafiano, & Societatis Regalis Sodali.

> IMPRIMATUR. S. PEPYS, Reg. Soc. PRÆSES.

> > Julii 5. 1686.

LONDINI,

Jusiu Societatis Regie ac Typis Josephi Streater. Prostat apud plures Bibliopolas. Anno MDCLXXXVII.

Left image courtesy of Manchaster Libraries Right image from Wikipedia

What Is Motion?

Zeno's Arrow Paradox

Zeno of Elea, "The object at each moment is at a fixed position."

How can it then move?

http://people.rit.edu/

http://www.daviddarling.info/

What is **"motion"**? How to **"describe"** it?

Sir Isaac Newton (1643–1727) Explains how to describe motion

Minimum Requirements

Reference Frame

Reference Frame

Time

lmage from http://www.pjcj.net/

Time

What is time?

Image from http://www.pjcj.net/

Two Methods To Describe Motion

Recording the Position

(as a function of time)

Image from http://people.rit.edu

Using "Rate" (amount of change per unit time)

$$\bar{v} = \frac{x(t_2) - x(t_1)}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$

Using "Rate" (amount of change per unit time)

$$\bar{v} = \frac{x(t_2) - x(t_1)}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$
$$v(t_1) = \lim_{t_2 \to t_1} \frac{x(t_2) - x(t_1)}{t_2 - t_1} = \frac{dx}{dt}$$
$$a(t_1) = \lim_{t_2 \to t_1} \frac{v(t_2) - v(t_1)}{t_2 - t_1} = \frac{dv}{dt}$$

Using "Rate" (amount of change per unit time)

$$\bar{v} = \frac{x(t_2) - x(t_1)}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$
$$v(t_1) = \lim_{t_2 \to t_1} \frac{x(t_2) - x(t_1)}{t_2 - t_1} = \frac{dx}{dt}$$
$$a(t_1) = \lim_{t_2 \to t_1} \frac{v(t_2) - v(t_1)}{t_2 - t_1} = \frac{dv}{dt}$$

Table of Derivatives

x(t)	\Rightarrow	$\frac{dx}{dt}$
1	\Rightarrow	0
t	\Rightarrow	1
t^2	\Rightarrow	2 <i>t</i>
t ⁿ	\Rightarrow	nt^{n-1} $(n \in \mathbb{Z})$
sin(t)	\Rightarrow	$+\cos(t)$
$\cos(t)$	\Rightarrow	$-\sin(t)$
$\exp(t)$	\Rightarrow	$\exp(t)$

.

.

How to "Predict" the Motion

(Newton's 2nd Law of Motion)

 $(force) = (mass) \times (acceleration)$

(Newton's 2nd Law of Motion)

$(force) = (mass) \times (acceleration)$

$$F = m \frac{dv}{dt}$$

(Newton's 2nd Law of Motion)

$$({\sf force}) = ({\sf mass}) imes ({\sf acceleration})$$

$$F = m \frac{dv}{dt} \qquad \qquad F = m \frac{d}{dt} \frac{dx}{dt}$$

(Newton's 2nd Law of Motion)

$$({\sf force}) = ({\sf mass}) imes ({\sf acceleration})$$

$$F = m \frac{dv}{dt}$$
 $F = m \frac{d}{dt} \frac{dx}{dt}$ $F = m \frac{d^2x}{dt^2}$

(Newton's 2nd Law of Motion)

$$({\sf force}) = ({\sf mass}) imes ({\sf acceleration})$$

$$F = m \frac{dv}{dt}$$
 $F = m \frac{d}{dt} \frac{dx}{dt}$ $F = m \frac{d^2x}{dt^2}$

$$x(t) = ?$$

How to solve the equation?

(algebraic equation)

x + 3 = 10	\Rightarrow	<i>x</i> =?
5x = 30	\Rightarrow	<i>x</i> =?
$x^2 = 144$	\Rightarrow	<i>x</i> =?
$10^{\times} = 1000$	\Rightarrow	<i>x</i> =?
$e^{x}=1$	\Rightarrow	<i>x</i> =?

(algebraic equation)

x + 3 = 10	\Rightarrow	x = 10 - 3
5 <i>x</i> = 30	\Rightarrow	$x = \frac{30}{5}$
$x^2 = 144$	\Rightarrow	$x = \sqrt{144}$
$10^{\times} = 1000$	\Rightarrow	$x = \log_{10} 1000$
$e^{x} = 1$	\Rightarrow	$x = \log_e 1 = \log 1$

Table of Derivatives

x(t)	\Rightarrow	$\frac{dx}{dt}$
1	\Rightarrow	0
t	\Rightarrow	1
t^2	\Rightarrow	2 <i>t</i>
t ⁿ	\Rightarrow	nt^{n-1} $(n \in \mathbb{Z})$
sin(t)	\Rightarrow	$+\cos(t)$
$\cos(t)$	\Rightarrow	$-\sin(t)$
$\exp(t)$	\Rightarrow	$\exp(t)$

.

.

$$\frac{dx}{dt} = 0 \quad \Rightarrow \quad x(t) = ?$$
$$\frac{dx}{dt} = 1 \quad \Rightarrow \quad x(t) = ?$$
$$\frac{dx}{dt} = 2 \quad \Rightarrow \quad x(t) = ?$$
$$\frac{dx}{dt} = t \quad \Rightarrow \quad x(t) = ?$$
$$\frac{dx}{dt} = 3t \quad \Rightarrow \quad x(t) = ?$$
$$\frac{dx}{dt} = x \quad \Rightarrow \quad x(t) = ?$$

$\frac{dx}{dt} = 0$	\Rightarrow	x(t) = C
$\frac{dx}{dt} = 1$	\Rightarrow	x(t) = t + C
$\frac{dx}{dt} = 2$	\Rightarrow	x(t) = 2t + C
$\frac{dx}{dt} = t$	\Rightarrow	$x(t) = \frac{1}{2}t^2 + C$
$\frac{dx}{dt} = 3t$	\Rightarrow	$x(t) = \frac{3}{2}t^2 + C$
$\frac{dx}{dt} = x$	\Rightarrow	$x(t) = C \exp(t)$

$$\boxed{m\frac{dv}{dt}=mg},$$

$$\boxed{m\frac{dv}{dt}=mg},\quad \frac{dv}{dt}=g,$$

$$\boxed{m\frac{dv}{dt}=mg},\quad \frac{dv}{dt}=g,\quad v(t)=gt+v_0$$

$$\boxed{m\frac{dv}{dt} = mg}, \quad \frac{dv}{dt} = g, \quad v(t) = gt + v_0$$
$$\boxed{\frac{dx}{dt} = gt + v_0},$$

$$m\frac{dv}{dt} = mg$$
, $\frac{dv}{dt} = g$, $v(t) = gt + v_0$
$$\frac{dx}{dt} = gt + v_0$$
, $x(t) = \frac{1}{2}gt^2 + v_0t + x_0$

(differential equation)

$$m\frac{dv}{dt} = mg$$
, $\frac{dv}{dt} = g$, $v(t) = gt + v_0$
$$\frac{dx}{dt} = gt + v_0$$
, $x(t) = \frac{1}{2}gt^2 + v_0t + x_0$

We need to measure two quantities x_0 and v_0 to predict the future of the motion.

"State"

(in dictionaries)

Image from

http://apple.com/

the particular condition that someone or something is in at a specific time

mode or condition of being

State of Mind

http://petshopbox.com/

State of Mind

🤨 😳 💓 😳 × 0 õ ŏ

10 %
25 %
5 %
15 %
:

http://petshopbox.com/

State of Matter

State of Matter

http://www.chem.ufl.edu/~itl/

Pressure, Volume, Density, Temperature, ...

State of Dice and Pennies

http://stores.auction.co.kr/

http://www.canstockphoto.com/

State of Dice and Pennies

Face head, tail

http://stores.auction.co.kr/

Pips 1,2,3,4,5,6

http://www.canstockphoto.com/

State of Flying Particle

State of Flying Particle

Mass	3	kg
Charge	0	С
Energy	5	J
Horizontal position	5	m
Vertical position	7	m
Horizontal velocity	5	m/s
Vertical velocity	8	m/s
Horizontal acceleration	5	m
Vertical acceleration	7	m
	:	

State of Flying Particle

Mass	3	kg
Charge	0	С
Energy	5	J
Horizontal position	5	m
Vertical position	7	m
Horizontal velocity	5	m/s
Vertical velocity	8	m/s
Horizontal acceleration	5	m
Vertical acceleration	7	m
÷	÷	

State of Flying Hammer

Graphic by Sndor Kabai /

State of Flying Hammer

Mass Charge Energy Horizontal position Vertical position Horizontal velocity Vertical velocity Angle Anglular velocity

÷

Graphic by Sndor Kabai /

State of Flying Hammer

Mass Charge Energy Horizontal position Vertical position Horizontal velocity Vertical velocity Angle Anglular velocity

Graphic by Sndor Kabai /

State of a Particle in Motion

(Classical Mechanics)

Sir Isaac Newton (1643-1727)

- Position r & Velocity v
- Newton's equation of motion

 $(\mathsf{force}) = (\mathsf{mass}) \times (\mathsf{acceleration})$

$$\boldsymbol{F} = m\frac{d\boldsymbol{v}}{dt} = m\frac{d^2\boldsymbol{r}}{dt^2}$$

Principia probant, non probantur. (Principles prove; they are not proved.)

Fundamental principles require no proof; they are assumed *a priori*.

(Newton laws of motion)

Newton's 1st Law

If no net force acts on a body, the body's velocity cannot change.

(Newton laws of motion)

Newton's 1st Law

If no net force acts on a body, the body's velocity cannot change.

Newton's 2nd Law

The net force on a body is equal to the product of the body's mass and its acceleration:

 $(force) = (mass) \times (acceleration)$

(Newton laws of motion)

Newton's 1st Law

If no net force acts on a body, the body's velocity cannot change.

Newton's 2nd Law

The net force on a body is equal to the product of the body's mass and its acceleration:

 $(force) = (mass) \times (acceleration)$

Newton's 3rd Law

When two bodies interact, the forces on the bodies from each other are always in magnitude and opposite in direction.

The Structure of Theory

Theory in Math

- Axioms
- Definitions
- Theorems

For logical arguments and efficient organization of thoughts.

The Structure of Theory

Theory in Physics

- Axioms ("Laws", "Principles")
- Definitions ("Interpretations")
- Theorems ("Laws", "Principles")
- Interpretations
- Experimental tests
- * Analogies

For fundamental understanding of nature and natural phenomena.

One of the Most Beautiful Theories!

Self-containing Self-consistent Beautiful structure

References