1. As claimed in class, finish the computation to obtain $T$, which is the coefficient of the outgoing wave to $\infty$ in the problem of the potential step.

$$
\Rightarrow \text { i) } \prod_{x=0}^{V_{0}} \quad \psi(x)= \begin{cases}e^{i k x}+R e^{-i k x} & (x \ll 0) \\ T e^{i k^{\prime} x} & (x>0) .\end{cases}
$$

ii) Boundary conditions.
(1) $x=0$ alk $z(x)$ जैड
(2) $\quad x=0 \quad ज / n \quad \psi^{\prime}(x) \quad$ gl is $\frac{1}{7}$.

BC. (1)

$$
1+R=T
$$

B.C.(2)

$$
\begin{aligned}
& i k-i k R=i k^{\prime} \cdot T \\
& k(1-R)=k^{\prime} T \\
& \therefore 1-R=\frac{k^{\prime}}{k} T
\end{aligned}
$$

화 : $\quad 2=\left(1+\frac{k^{\prime}}{k}\right) T$

$$
T=\frac{2}{1+\frac{K^{\prime}}{K}}
$$

$$
=\frac{2 K}{K+k^{\prime}} .
$$


 Schrödinger equation on ein...

$$
\left[\begin{array}{c}
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)=E \psi(x) \quad(x<0) \\
\left(-\frac{\hbar^{2}}{\partial m} \frac{d^{2}}{d x^{2}}+V_{0}\right) \psi(x)=E \psi(x) \quad(x>0) \\
\Downarrow \\
\frac{\hbar^{2} k^{2}}{2 m}=E \quad \frac{\hbar^{2} k^{\prime 2}}{2 m}+V_{0}=E \\
K=\sqrt{\frac{2 m E}{\hbar^{2}}} \quad H^{\prime}=\sqrt{\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}}}
\end{array}\right.
$$

(0)

$$
\begin{aligned}
T & =\frac{2}{1+\frac{K^{\prime}}{K}}=\frac{2}{1+\sqrt{\frac{2 m\left(E-V_{0}\right)}{2 m E}}} \\
& =\frac{2}{1+\sqrt{\frac{E-V_{0}}{E}}} \rightarrow V_{0}=0 \text { olVo.. } T=1
\end{aligned}
$$

2．Consider the Dirac delta potential given by．

$$
V(x)=-\frac{\hbar^{2} \lambda}{2 m a} \delta(x)
$$

where $\lambda$ is a dimensionless positive constant．$a$ is an arbitrary positive constant．When particles are incident from the left，compute the reflection and transmission coefficients．

$$
\begin{aligned}
& \Rightarrow \text { i) } \overbrace{}^{V(x)}
\end{aligned}
$$

$$
\begin{aligned}
& \psi(x)= \begin{cases}e^{i k x}+R e^{-i k x} & (x<0) \\
T e^{i k x} & (x>0)\end{cases}
\end{aligned}
$$

aron．$x \neq 0$ ज्ञात $V(x)=0 \quad 01 E 3 . . \quad x>0$ octans xeco 울 3 与 wave number te solute．．．

$$
\frac{\hbar^{2} k^{2}}{2 m}=E \quad \cdots \quad K=\sqrt{\frac{2 m E}{\hbar^{2}}} \mathrm{drl}
$$

ip）Boundary conditions
$\xrightarrow{\text { B．C．（1）}} \quad x=0$ 因 $\quad \psi(x)$ oु속
BC（2），$x=0.01 / \pi \psi^{\prime}(x)$ 单退分．
Guckalog．Schrödinger＜compat＞ᄇ＜compat＞ᅡ＜compat＞ᄋ＜compat＞ᄌ＜compat＞ᅩ＜compat＞ᄉ＜compat＞ᅵ＜compat＞ᄀ＜compat＞ᄋ＜compat＞ᅦ Gin $\delta$ function potential e $\psi^{\prime}(x) e_{1}$


Schrodinger egn.

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)-\frac{\hbar^{2} \lambda}{2 m a} f(x) \quad \psi(x)=E \psi(x)
$$



$$
\begin{aligned}
& \Downarrow \\
& -\frac{\hbar^{2}}{\partial m}\left(\left.\frac{d f(x)}{d x}\right|_{x=\varepsilon}-\left.\frac{d^{2}(x)}{d x}\right|_{x=-\varepsilon}\right) \\
& -\frac{\hbar^{2} \lambda}{2 m a} \cdot \psi(0)=0 . \\
& \left.\therefore \frac{d y(x)}{d x}\right|_{x=0^{-}}-\left.\frac{d f(x)}{d x}\right|_{x=0^{+}}=\frac{\lambda}{a} \psi(0)
\end{aligned}
$$

iir)
B.C. (1)

$$
1+R=T
$$

$\xrightarrow{B \cdot \sigma \cdot(2)}(i k-i k R)-i k T=\frac{\lambda}{a} \cdot T$

$$
\begin{aligned}
& 1-R-T=\frac{\lambda}{i k a} T \\
& 1-R=\left(1-\frac{i \lambda}{k a}\right) T
\end{aligned}
$$

iv)

$$
\begin{aligned}
& 2=\left(2-\frac{i \lambda}{k a}\right) T \\
& T=\frac{2}{2-\frac{\lambda^{\lambda}}{k a}} . \quad(\lambda=00109 . \quad T=1) \\
& R=T-1=\frac{2}{2-\frac{\dot{\lambda} \lambda}{k a}}-1 \\
& =\frac{2-2+\frac{\dot{\lambda}}{H a}}{2-\frac{\dot{\lambda}}{H a}}=\frac{\frac{\dot{\lambda}}{H a}}{2-\frac{\dot{\lambda}}{H a}} \\
& {\left[\begin{array}{l}
|T|^{2}=\frac{2}{2-\frac{i \lambda}{k a}} \cdot \frac{1}{2} \\
|R|^{2}=\frac{\left(\frac{\lambda}{k a}\right)^{2}}{4+\left(\frac{\lambda}{k a}\right)^{2}}
\end{array}\right.}
\end{aligned}
$$

3. Consider the two Dirac delta potentials given by.

$$
V(x)=-\frac{\hbar^{2} \lambda}{2 m a}[f(x-a)+f(x+a)]
$$

where $\lambda$ and a are described in the previous problem. Here, also, compute the reflection and transmission coefficients.
$\Rightarrow$ i) $\quad V^{(x)}$

$$
\prod_{x=-a}^{V} \prod_{x=a} \Rightarrow \psi(x)=\left\{\begin{array}{l}
e^{i \hbar x}+R e^{-i k x} \\
A e^{i k x}+B e^{-i k x}(x<-a) \\
T e^{i k x} \quad(x>a)
\end{array}\right.
$$

ii) $B \cdot C ;(1) \quad x=-a$, a or kn $\psi(x)$ as

ip) $B \subset \subset$

$$
\left[\begin{array}{l}
e^{i k(-a)}+R e^{-i k(-a)}=A e^{i t(-a)}+B e^{-i k(-a)} \\
A e^{i k a}+B e^{-i k a}=T e^{i \hbar a}
\end{array}\right.
$$

(Tु21) $\left[\begin{array}{l}1+R e^{2 i k a}=A+B e^{+2 i k a} \\ A+B e^{-2 i k a}=T\end{array}\right.$

BC. (2).

$$
\begin{aligned}
& {\left[\begin{array}{l}
\left.\frac{d f(x)}{d x}\right|_{x=-a^{-}}-\left.\frac{d f(x)}{d x}\right|_{x=-a^{+}}=\frac{\lambda}{a} \psi(-a) . \\
\left.\frac{d f(x)}{d x}\right|_{x=a^{-}}-\left.\frac{d^{2}(x)}{d x}\right|_{x=a^{+}}=\frac{\lambda}{a} \psi(a) .
\end{array}\right.} \\
& \Downarrow \\
& {\left[\begin{array}{l}
\quad i k\left(e^{i k(-a)}-R e^{-i k(-a)}\right)-i k\left(A e^{i k(-a)}-B e^{-i k(-a)}\right) \\
=\frac{\lambda}{a} \cdot\left(e^{i \hbar(-a)}+R e^{-i k(-a)}\right) \\
i k\left(A e^{i k a}-B e^{-i \hbar a}\right)-i k T e^{i t a} \\
=\frac{\lambda}{a} \cdot\left(T e^{i \hbar a}\right)
\end{array}\right.}
\end{aligned}
$$

(大ुस)

$$
\left[\begin{array}{l}
1-R e^{+2 i k a}-A+B e^{2 i \hbar a}=\frac{\lambda}{i k a}\left(1+R e^{2 i k a}\right) \\
A-B e^{-2 i k a}-T=\frac{\lambda}{i t a} T
\end{array}\right.
$$

iv) $47 \mathrm{ma}_{1} \mathrm{~N}$
(1) $\quad 1+R e^{2 i k a}=A+B e^{2 i k a}$
(2) $A+B e^{-2 i k a}=T$.
(3) $1-R e^{+2 i k a}-A+B e^{2 i k a}=\frac{\lambda}{i k a}\left(1+R e^{2 i k a}\right)$
(4) $A-B e^{- \text {-ika }}=\left(1+\frac{\lambda}{i k a}\right) T$.
(2) $+(4)$

$$
\begin{align*}
2 A & =\left(2+\frac{\lambda}{i k a}\right) T \\
A & =\left(1+\frac{\lambda}{2 i k a}\right) T \tag{5}
\end{align*}
$$

(2) - (4)

$$
\begin{align*}
& 2 B e^{-2 i k a}=-\frac{\lambda}{i k a} T \\
& B=-\frac{\lambda}{2 i \hbar a} \cdot e^{2 i \hbar a} \tag{6}
\end{align*}
$$

(1) + (3)

$$
2-2 A=\frac{\lambda}{i k a}\left(1+R e^{\text {Jika }}\right)
$$

(1) - (3)

$$
2 R e^{2 i k a}-2 B e^{2 i k a}=-\frac{\lambda}{i k a}\left(1+R e^{2 i \hbar a}\right)
$$

$\Downarrow$

$$
\left[\begin{array}{l}
1-A=\frac{\lambda}{2 i k a}\left(1+R e^{2 i k a}\right) \\
R \cdot e^{2 i k a}+\frac{\lambda}{2 i k a} \cdot R e^{2 i k a}=-\frac{\lambda}{2 i k a}+B e^{2 i k a}
\end{array}\right.
$$

リ

$$
\left[\begin{array}{l}
\frac{\lambda}{\text { Dika }} \cdot R e^{\text {2ika }}=1-\frac{\lambda}{\text { دika }}-A  \tag{7}\\
\left(1+\frac{\lambda}{\text { 2ika }}\right) R e^{\text {دika }}=-\frac{\lambda}{\text { 2ika }}+B e^{2 i k a}
\end{array}\right.
$$

(5) き (7) 01 cugㅣㄹ

$$
\frac{\lambda}{\text { دika }} R e^{\text {Dika }}=1-\frac{\lambda}{\text { دika }}-\left(1+\frac{\lambda}{\text { دika }}\right) T
$$

(6) $\frac{\circ}{2}(8) 01 \mathrm{ch}$

$$
\begin{aligned}
\left(1+\frac{\lambda}{2 i k a}\right) R e^{\text {دika }}=-\frac{\lambda}{2 i k a}+ & \left(-\frac{\lambda}{\text { دita }} e^{2 i k a} T\right) \\
& \times e^{2 i k a} \\
= & -\frac{\lambda}{2 i k a}\left[1+T e^{4 i \hbar a}\right]
\end{aligned}
$$

$\Downarrow$

$$
\begin{aligned}
& {\left[\begin{array}{l}
\frac{\lambda}{\text { Dika }} e^{\text {Dika }} R+\left(1+\frac{\lambda}{\text { Dika }}\right) T=1-\frac{\lambda}{\text { Dika }} \\
\left(1+\frac{\lambda}{\text { دika }}\right) e^{\text {2ika }} R+\frac{\lambda}{\text { Dika }} e^{\text {Lika }} T=-\frac{\lambda}{\text { Dika }} .
\end{array}\right.} \\
& \left(\begin{array}{lc}
\frac{\lambda}{\text { Jika }} e^{\text {Jika }} & 1+\frac{\lambda}{\text { Jika }} \\
\left(1+\frac{\lambda}{\text { Jika }}\right) e^{\text {Jika }} & \frac{\lambda}{\text { Dika }} e^{\text {iika }}
\end{array}\right)\binom{R}{T}=\binom{1-\frac{\lambda}{\text { Jika }}}{-\frac{\lambda}{\text { Jikoo }}}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore\binom{R}{T}=\left(\begin{array}{cc}
\frac{\lambda}{\text { Jika }} e^{\text {jika }} & 1+\frac{\lambda}{\text { Jika }} \\
\left(1+\frac{\lambda}{\text { Jika }}\right) e^{\text {دika }} & \frac{\lambda}{\text { Jika }} e^{4 i k a}
\end{array}\right)^{-1}\binom{1-\frac{\lambda}{\text { Jika }}}{-\frac{\lambda}{\text { } i k a}} \\
& \frac{\lambda}{\text { Dika }}=\Gamma^{\prime} \text { et oblz. } \\
& \therefore\binom{R}{T}=\left(\begin{array}{cc}
\Gamma e^{\text {دika }} & 1+\Gamma \\
(1+\Gamma) e^{\text {jita }} & \Gamma e^{4 i \hbar a}
\end{array}\right)^{-1}\binom{1-\Gamma}{-\Gamma} \\
& \left.=\frac{1}{\Gamma^{2} e^{\text {bika }}-(1+\Gamma)^{2} e^{\text {2ika }}\left(\begin{array}{c}
\Gamma e^{\text {sika }}
\end{array}-(1+\Gamma)\right.} \begin{array}{l}
-(1+\Gamma) e^{\text {دika }} \Gamma e^{\text {دika }}
\end{array}\right) \\
& \times\binom{ 1-\Gamma}{-\Gamma} \\
& =\frac{e^{-4 i k a}}{\Gamma^{p} \cdot e^{\text {2ika }}-(1+\Gamma)^{2} e^{-2 i k a} \cdot\left(\begin{array}{l}
\Gamma(1-\Gamma) e^{4 i k a}+\Gamma(1+\Gamma) \\
-(1+\Gamma)(1-\Gamma) e^{\text {zika }} \\
-\Gamma^{2} e^{2 i k a}
\end{array}\right), ~}
\end{aligned}
$$

$$
\begin{aligned}
\therefore R & =\frac{e^{-4 i k a} \Gamma\left[(1-\Gamma) e^{4 i k a}+(1+\Gamma)\right]}{\Gamma^{2} e^{2 i k a}-(1+\Gamma)^{2} e^{-2 i k a}} \\
T & =\frac{e^{-4 i k a} \cdot e^{2 i k a}(-1)}{\Gamma^{2} e^{2 i k a}-(1+\Gamma)^{2} \cdot e^{-2 i k a}} \\
& =-\frac{e^{-2 i k a}}{\Gamma^{2} e^{2 i k a}-(1+\Gamma)^{2} e^{-2 i k a}} \\
R & =\frac{e^{-2 i k a} \Gamma\left[(1-\Gamma) e^{2 i k a}+(1+\Gamma) e^{-2 i k a}\right]}{\Gamma^{2} e^{2 i k a}-(1+\Gamma)^{2} e^{-2 i k a}}
\end{aligned}
$$

(u) 장레.

$$
\left[\begin{array}{l}
T=-\frac{e^{- \text {-ika }}}{\Gamma^{2} e^{\text {دita }}-(1+\Gamma)^{2} e^{- \text {-ika }}}\left[\begin{array}{l}
R=\frac{e^{- \text {-ika }} \cdot \Gamma\left[(1-\Gamma) e^{\text {2ika }}+(1+\Gamma) e^{- \text {-ika }}\right]}{\Gamma^{2} e^{\text {دita }}-(1+\Gamma)^{2} e^{- \text {-ika }}}
\end{array} .\right.
\end{array}\right.
$$

where $\Gamma=\frac{\lambda}{2 i k a}$
ii)

$$
\left.\therefore\langle p\rangle=t k\langle\psi \mid \psi\rangle+\frac{\hbar}{2 i} u^{2}(x)\right]_{\text {boundary }}
$$

만야.. $|4\rangle$ 가 normalized For
$u\left(x^{2}\right) \rightarrow 0$ at boundary.
$\therefore\langle p\rangle=\frac{1}{1} k$
2. Gasiorowicz Problem 1. in Ch. 4.

Consider an arbitrary potential localized on a finite part of the $x$-axis. The solutions of the Schrodinger equation to the left and to the right of the potential region are given by..

respectively. Show that.. if we write

$$
\begin{aligned}
& C=S_{11} A+S_{12} D \\
& B=S_{21} A+S_{22} D
\end{aligned}
$$

that is, relate the "outgoing" waves to the "ingoing" waves by."

$$
\binom{C}{B}=\left(\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right)\binom{A}{D}
$$

then the following relations hold

$$
\begin{aligned}
& \left|S_{11}\right|^{2}+\left|S_{21}\right|^{2}=1 \\
& \left|S_{22}\right|^{2}+\left|S_{22}\right|^{2}=1 \\
& S_{11} S_{12}^{*}+S_{21} S_{22}^{*}=0 .
\end{aligned}
$$

Use this to show that the matrix

$$
S=\left(\begin{array}{ll}
S_{11} & S_{13} \\
S_{21} & S_{22}
\end{array}\right)
$$

and its transpose are unitary.

$\therefore$ Schrodinger equation..

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)=\mathbb{U}
$$

ii) flux.

$$
j=\frac{\hbar}{\operatorname{sim}}\left(\psi^{*} \frac{d \psi}{d x}-\frac{d \psi^{*}}{d x} \psi\right)
$$

iii) time independent potential on


$$
\psi(x)=\left\{\begin{array}{r}
A e^{i k x}+B e^{-i k x} \\
\left(\begin{array}{r}
(\text { potential } 2 t / \bar{e})
\end{array}\right. \\
C e^{i k x}+D e^{-i k x}
\end{array}\right.
$$

(potential 2를ㅍㄱ).

$$
\text { 즉.. }\left|j_{\text {in }}\right|=\left|j_{\text {out }}\right|
$$

$$
\begin{aligned}
& A e^{i k x}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+i k A^{*} e^{-i k x} \cdot A e^{i d x}\right] \\
& =\frac{\hbar}{2 i m} \cdot 2 i k|A|^{2}=\frac{\hbar k}{m}|A|^{2} \text {. } \\
& j_{\text {in }}(\text { fright })=\frac{\hbar}{2 i m}(-\partial i k)|D|^{2}=-\frac{\hbar k}{m}|D|^{2} \text {. } \\
& D e^{-i k x} \\
& j_{\text {out }}\binom{t_{0}}{\text { left }}=-\frac{\hbar_{k}}{m}\left(\left.B\right|^{2}\right. \\
& B e^{-j k x} \\
& j_{\text {out }}\binom{\text { to }}{\text { right }}=\frac{\hbar k}{m}|c|^{2} . \\
& C e^{i k x} \\
& \text { steady state } \\
& \therefore \frac{\hbar k}{m}\left(|A|^{2}+|D|^{2}\right)=\frac{\hbar k}{m}\left(|B|^{2}+|C|^{2}\right) \\
& \downarrow \\
& |A|^{2}+|D|^{2}=|B|^{2}+|C|^{2}
\end{aligned}
$$

io)

$$
\begin{aligned}
C= & S_{11} A+S_{12} D \\
& \downarrow \\
\mid C^{2}= & \left(S_{11} A+S_{12} D\right)\left(S_{11}^{*} A^{*}+S_{12}^{*} D^{*}\right) \\
= & \left|S_{11}\right|^{2}|A|^{2}+\left(S_{11} A S_{12}^{*} D^{*}+S_{12} D S_{11}^{*} A^{*}\right) \\
& +\left|S_{12}\right|^{2}|D|^{2} \\
|B|^{2}= & \left(S_{21} A+S_{22} D\right)\left(S_{21}^{*} A^{*}+S_{22}^{*} D^{*}\right) \\
= & \left|S_{21}\right|^{2}|A|^{2}+\left(S_{21} A S_{22}^{*} D^{*}+S_{22} D S_{21}^{*} A^{*}\right) \\
& +\left|S_{22}\right|^{2}|D|^{2}
\end{aligned}
$$

())

$$
\begin{aligned}
\therefore|A|^{2}+|D|^{2} & =\left(\left|S_{11}\right|^{2}+\left|S_{21}\right|^{2}\right)|A|^{2} \\
& +\left(\left|S_{12}\right|^{2}+\left|S_{22}\right|^{2}\right)|D|^{2} \\
& +\left(S_{11} S_{12}^{*}+S_{21} S_{22}^{*}\right) A D^{*} \\
& +\left(S_{11} S_{11}^{*} S_{12}+S_{21}^{*} S_{22}\right) A^{*} D
\end{aligned}
$$

항등식 ण트…

$$
\left(\begin{array}{l}
\left|S_{11}\right|^{2}+\left|S_{21}\right|^{2}=1 \\
\left|S_{12}\right|^{2}+\left|S_{22}\right|^{2}=1 \\
S_{11} S_{12}^{*}+S_{21} S_{22}^{*}=0
\end{array}\right)
$$

(i)

$$
\begin{aligned}
S^{+} S & =\left(\begin{array}{ll}
S_{11}^{*} & S_{21}^{*} \\
S_{22}^{*} & S_{22}^{*}
\end{array}\right)\left(\begin{array}{cc}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 S_{11}{ }^{2}+\left|S_{21}\right|^{2} & S_{11}^{*} S_{12}+S_{21}^{*} S_{22} \\
S_{12}^{*} S_{11}+S_{22}^{*} S_{21} & \left|S_{12}\right|^{2}+1 S_{22}^{2}
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\mathbb{1} \\
& \therefore \text { unntary: }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\left(S^{\top}\right)^{+} S^{\top} & =S^{*} S^{\top} \\
& =\left(\begin{array}{ll}
S_{11}^{*} & S_{22}^{*} \\
S_{21}^{*} & S_{22}^{*}
\end{array}\right)\left(\begin{array}{ll}
S_{11} & S_{21} \\
S_{12} & S_{22}
\end{array}\right) \\
& =\left(\begin{array}{ll}
\left|S_{11}\right|^{2}+\left|S_{0}\right|^{2} & S_{11}^{*} S_{21}+S_{12}^{*} S_{22} \\
S_{21}^{*} S_{11}+S_{22}^{*} S_{12} & \left|S_{21}\right|^{2}+\left|S_{22}\right|^{2}
\end{array}\right)
\end{aligned}
$$

Uiii) Sit unitary Rtte fl亻실울 으응핮․

$$
\begin{aligned}
& \therefore \quad \operatorname{det} S=e^{i \delta} . \\
& \therefore S_{11} S_{22}-S_{12} S_{21}=e^{i \delta} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\therefore & S_{11} S_{12}^{*} S_{22}-\left|S_{12}\right|^{2} S_{21}=e^{i \delta} S_{12} \\
& C_{2}=-S_{21} S_{22}^{*}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore-S_{21}(\underbrace{\left|S_{22}\right|^{2}+\left|S_{12}\right|^{2}}_{l=1})=e^{i \delta} S_{12} \\
& \therefore-S_{21}=e^{i \delta} S_{12} \rightarrow S_{21}=-e^{i \delta} S_{12}
\end{aligned}
$$

ix)

$$
\begin{aligned}
&\left|S_{11}\right|^{2}+\left|S_{12}\right|^{2}=\left|S_{11}\right|^{2}+\left|S_{21}\right|^{2}=1 . \\
& \cdot\left|S_{21}\right|^{2}+\left|S_{22}\right|^{2}=\left|S_{12}\right|^{2}+\left|S_{22}\right|^{2}=1 . \\
& \cdot S_{11}^{*} S_{21}+S_{12}^{*} S_{22}= \\
&+\left(-S_{11}^{*}\left(-e^{i \delta} S_{12}\right)\right. \\
&+\left(S_{21}^{*}\right) S_{22} \\
&=e^{-i \delta}\left(S_{11}^{*} S_{12}+S_{21}^{*} S_{22}\right)=0 . \\
& \cdot S_{21}^{*} S_{11}+S_{22}^{*} S_{12}=\left(S_{11}^{*} S_{21}+S_{12}^{*} S_{22}\right)^{*}=0 .
\end{aligned}
$$

$\therefore S^{\top}$ is unitary.
3. Gasiorowicz Problem 2 in Ch. 4.

Calculate the elements of the scattering matrix, $S_{11}, S_{12}$, $S_{21}$, and $S_{22}$ for the potential

$$
\begin{aligned}
V(x) & =0 & & x<-a \\
& =V_{0} & & -a<x<a \\
& =0 & & x<a .
\end{aligned}
$$

and show that the general conditions proved in Problem 1 are indeed satisfied.
$\Rightarrow$ i) $k^{2}=\frac{2 m E}{\hbar^{2}}, \quad q^{2}=\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}}$
I The Solution.

$$
u(x)= \begin{cases}A e^{i k x}+B e^{-i k x} & x<-a \\ E e^{i \xi x}+F e^{-i \xi x} & |x|<a \\ C e^{i k x}+D e^{-i k x} & x>a\end{cases}
$$

iP) $x=a 21 \quad x=-a$ vila.. $u(x) 2 l \quad \frac{d u}{d x}$ of la 1 .

$$
\begin{align*}
& x=-a\left[\begin{array}{l}
A e^{-i k a}+B e^{i k a}=E e^{-i q a}+F e^{i q a} \\
i k\left(A e^{-i k a}-B e^{i k a}\right)=i q\left(E e^{-i q a}-F e^{i q a}\right)
\end{array}\right.  \tag{1}\\
& \int\left[\begin{array}{l}
C e^{i k a}+D e^{-i k a}=E e^{i q a}+F e^{-i q a} \\
i k\left(C e^{i k a}-D e^{-i k a}\right)=i q\left(E e^{i q a}-F e^{-i q a}\right)
\end{array}\right. \tag{2}
\end{align*}
$$

$$
\begin{align*}
& \text { (1) } A e^{-i k a}+B e^{i k a}=E e^{-i q a}+F e^{i q a} \\
& \text { (2) } \frac{k}{q}\left(A e^{-i k a}-B e^{i k a}\right)=E e^{-i q a}-F e^{i q a} \\
& \cdot 2 E e^{-i q a}=A\left(1+\frac{k}{q}\right) e^{-i k a}  \tag{A}\\
& \\
& +B\left(1-\frac{k}{q}\right) e^{i k a}  \tag{B}\\
&
\end{align*}
$$

(3) $C e^{i k a}+D e^{-i t a}=E e^{i q a}+F e^{-i q a}$
(4)

$$
\begin{align*}
& \frac{k}{q}\left(C e^{i k a}-D e^{-i k a}\right)=E e^{i \xi a}-F e^{-i q a} \\
& \cdot 2 E e^{i q a}=\left(1+\frac{k}{q}\right) C e^{i k a}+\left(1-\frac{k}{q}\right) D e^{-i k a}  \tag{C}\\
& \cdot 2 F e^{-i q a}=\left(1-\frac{k}{q}\right) C e^{i k a}+\left(1+\frac{k}{q}\right) D e^{-i k a} \tag{D}
\end{align*}
$$

$$
\begin{aligned}
& \text { (A) } \times\left(1+\frac{k}{q}\right)-(B) \times\left(1-\frac{k}{q}\right) \\
& 2 E \cdot e^{-i q a}\left(1+\frac{k}{q}\right)-2 F \cdot e^{i q a}\left(1-\frac{k}{q}\right) \\
& =A\left(1+\frac{k}{q}\right)^{2} e^{-i k a}-A\left(1-\frac{k}{q}\right)^{2} e^{-i k a} \\
& =e^{-2 i q a}\left(1+\frac{k}{q}\right) \cdot\left[\left(1+\frac{k}{q}\right) C \cdot e^{i k a}+\left(1-\frac{k}{q}\right) D \cdot e^{-i k a}\right] \\
& -e^{2 i q a}\left(1-\frac{k}{q}\right) \cdot\left[\left(1-\frac{k}{q}\right) C e^{i k a}+\left(1+\frac{k}{q}\right) D e^{-i k a}\right]
\end{aligned}
$$

$$
\begin{aligned}
& C e^{i k a}\left[\left(1+\frac{k}{q}\right)^{2} e^{-2 i g a}-\left(\left(-\frac{k}{q}\right)^{2} e^{2 i q a}\right]\right. \\
& =A e^{-i k a}\left[\left(1+\frac{k}{q}\right)^{2}\left(1-\frac{k}{q}\right)^{2}\right] \\
& +D e^{-i k a}\left[\left(1+\frac{k}{q}\right)\left(1-\frac{k}{q}\right) e^{2 i q a}-\left(1+\frac{k}{q}\right)\left(1-\frac{k}{q}\right) e^{-2 i q a}\right] \\
& C=A \cdot \frac{e^{-2 i k a}\left[\left(1+\frac{k}{q}\right)^{2}+\left(1-\frac{k}{q}\right)^{2}\right]}{\left[\left(1+\frac{k}{q}\right)^{2} e^{-2 i q a}-\left(1-\frac{k}{q}\right)^{2} e^{2 i q-a}\right]}
\end{aligned}
$$

$$
+D \cdot \frac{e^{-2 i k a}\left(1+\frac{k}{q}\right)\left(1-\frac{k}{q}\right)\left[e^{2 i q a}-e^{-2 i q a}\right]}{\left[\left(1+\frac{k}{q}\right)^{2} e^{-2 i q a}-\left(1-\frac{k}{q}\right)^{2} e^{2 i q a}\right]}
$$

$$
\begin{aligned}
& \text { (c) } x\left(1-\frac{k}{q}\right)-(D) \times\left(1+\frac{k}{q}\right) \\
& \sqrt{4} \\
& 2 E \theta^{i q a}\left(1-\frac{k}{q}\right)-2 F e^{-i q a}\left(1+\frac{k}{q}\right) \\
& =\left(1-\frac{k}{q}\right)^{2} D e^{-i k a}-\left(1+\frac{k}{q}\right)^{2} D e^{-i \frac{k}{q a}} \\
& =e^{2 i q a}\left(1-\frac{k}{q}\right)\left[A\left(1+\frac{k}{q}\right) e^{-i k a}+B\left(1-\frac{k}{q}\right) e^{i k a}\right] \\
& -e^{-i q q a}\left(1+\frac{k}{q}\right)\left[A\left(1-\frac{k}{q}\right) e^{-i k a}+B\left(1+\frac{k}{q}\right) e^{i k a}\right]
\end{aligned}
$$

$$
\begin{aligned}
& B \cdot e^{i k a}\left[\left(1-\frac{k}{q}\right)^{2} e^{2 i g a}-\left(1+\frac{k}{\xi}\right)^{2} e^{-2 i q a}\right] \\
& =A e^{-i k a}\left(1+\frac{k}{q}\right)\left(1-\frac{k}{q}\right)\left[e^{-2 i q a}-e^{2 i q a}\right]
\end{aligned}
$$

$$
\begin{aligned}
& +D e^{-i k a}\left[\left(1-\frac{k}{g}\right)^{2}-\left(1+\frac{k}{g}\right)^{2}\right] \\
B & =A \cdot \frac{e^{-2 i k a}\left(1+\frac{k}{q}\right)\left(1-\frac{k}{q}\right)\left[e^{-2 i q a}-e^{2 i g a}\right]}{\left[\left(1-\frac{k}{q}\right)^{2} e^{2 i g a}-\left(1+\frac{k}{q}\right)^{2} e^{-2 i q a}\right]} \\
& +D \cdot \frac{e^{-2 i k a}\left[\left(1-\frac{k}{q}\right)^{2}-\left(\left(1 \frac{k}{q}\right)^{2}\right]\right.}{\left[\left(1-\frac{k}{q}\right)^{2} e^{2 i g a}-\left(1+\frac{k}{q}\right)^{2} e^{-2 i g a}\right]}
\end{aligned}
$$

$$
\begin{aligned}
\sim\binom{C}{B} & =\left(\begin{array}{ll}
S_{11}(k) & S_{12}(k) \\
S_{21}(k) & S_{22}(k)
\end{array}\right)\binom{A}{D} \\
S_{11}(k) & =\frac{e^{-2 i k a}\left[\left(1+\frac{k}{q}\right)^{2}-\left(1-\frac{k}{q}\right)^{2}\right]}{\left[\left(1+\frac{k}{q}\right)^{2} e^{-2 i g a}-\left(1-\frac{k}{q}\right)^{2} e^{2 i g a}\right]} \\
S_{22}(k) & =\frac{e^{-2 h k a}\left(1+\frac{k}{q}\right)\left(1-\frac{k}{q}\right)\left[e^{2 i g a}-e^{-2 i g a}\right]}{\left[\left(1+\frac{k}{q}\right)^{2} e^{-2 i q a}-\left(\left(-\frac{k}{q}\right)^{2} e^{2 i q a}\right]\right.} \\
S_{21}(k) & =+\frac{e^{-2 i k a}\left(1+\frac{k}{q}\right)\left(1-\frac{k}{q}\right)\left[e^{2 i q a}-e^{-2 i g a}\right]}{\left[\left(1+\frac{k}{q}\right)^{2} e^{-2 i g a}-\left(1-\frac{k}{q}\right)^{2} e^{2 i g a}\right]} \\
S_{22}(k) & =\frac{e^{-2 i k a}\left[\left(1+\frac{k}{q}\right)^{2}-\left(1-\frac{k}{q}\right)^{2}\right]}{\left[\left(1+\frac{k}{q}\right)^{2} e^{-2 i g a}-\left(1-\frac{k}{q}\right)^{2} e^{2 i q a}\right]}
\end{aligned}
$$

mathematica $\frac{2}{2}$ Sु희.. Il matrix) 1 unitary 임르 응 of cm
5. Gasiorowicz Problem 6. in Ch. 4.

Consider the scattering matrix for the potential

$$
\frac{2 m}{\hbar^{2}} V(x)=\frac{\lambda}{a} \delta(x-b) \quad V(x)=\frac{\hbar^{2} \lambda}{2 m a} f(x-b)
$$

Show that it has the form

$$
\left(\begin{array}{ll}
\frac{\text { Jika }}{\text { Jika- }} & \frac{\lambda}{\text { Jika- }} e^{- \text {دikb }} \\
\frac{\lambda}{\text { pika- }} e^{\text {2ikb }} & \frac{\text { pika }}{\text { pika- }}
\end{array}\right)
$$

Prove that it is unitary, and that it will yield the condition for bound states when the elements of that matrix become infinite. (This will only occur for $\lambda<0$ ).

$$
\Rightarrow \text { i) } u(x)= \begin{cases}A e^{i k x}+B e^{-i k x} & x<b \\ C e^{i k x}+D e^{-i k x} & x>b\end{cases}
$$

ii) $u(x) \frac{1}{乙} \quad x=b$ or

$$
\begin{aligned}
& \frac{d u}{d x} \text { c } x=b o x / n \\
& \begin{aligned}
\left.\frac{d u}{d x}\right|_{b+\varepsilon}-\left.\frac{d u}{d x}\right|_{b-\varepsilon} & =\frac{\hbar^{2}}{2 m a} \cdot \frac{2 m}{\hbar^{2}} \cdot \lambda u(b) \\
& =\frac{\lambda}{a} u(b) .
\end{aligned}
\end{aligned}
$$

i99)

$$
\begin{align*}
& u(b)=A e^{i k b}+B e^{-i t+b}=C e^{i k b}+D e^{-i(k b}  \tag{1}\\
& \begin{aligned}
\frac{d u}{d x} & \left.\right|_{x=b+\varepsilon}-\left.\frac{d u}{d x}\right|_{x=b-\varepsilon}=i k\left(C e^{i k b}-D e^{-i k b}\right) \\
& -i k\left(A e^{i k b}-B e^{-i k b}\right) \\
\therefore A & =\frac{\lambda}{a} \cdot\left(A e^{i k b}+B e^{-i k b}\right)
\end{aligned}
\end{align*}
$$

$$
\begin{align*}
& \left.\frac{d u}{d x}\right|_{x=b+\varepsilon}-\left.\frac{d u}{d x}\right|_{x=b-\varepsilon}=i k\left(C e^{i k b}-D e^{-i k b}\right) \\
& -i k\left(A e^{i k b}-B e^{-i k b}\right) \\
& \therefore=\frac{\lambda}{a} \cdot\left(A e^{i k b}+B e^{-i k b}\right) \\
& \left.2 \in e^{i+k}\right)  \tag{1}\\
& =i e^{i k b}\left(\frac{\lambda}{a}+i k\right)+B e^{-i k b}\left(\frac{\lambda}{a}-i k\right) \\
& =i e^{i k b}-i k D e^{-i k b}
\end{align*}
$$

$$
\begin{aligned}
& \text { (7) } \times\left(\frac{\lambda}{a}-i k\right)-(b) \\
& =A e^{i k b}\left[\frac{\alpha}{a}-i k-\frac{x}{a}-i k\right]=
\end{aligned}
$$

$$
C e^{i k b}\left[\frac{\lambda}{a}-i k-i k\right]
$$

$$
+D e^{-i k b}\left[\frac{\lambda}{a}-i k t+j k\right]
$$

$$
\therefore C=A \cdot \frac{-2 i k}{\frac{\lambda}{a}-2 i k}+0 \cdot \frac{e^{-2 i k b}\left(-\frac{\lambda}{a}\right)}{\frac{\lambda}{a}-2 i k}
$$

$$
=A \cdot \frac{2 i k}{\partial i k-\frac{\lambda}{a}}+D \cdot \frac{e^{-2 i k b} \frac{\lambda}{a}}{2 i k-\frac{\lambda}{a}}
$$

$$
\begin{aligned}
\sim & \text { Aik-(b) } \\
\Rightarrow & \text { Aik } e^{i k b}+B i k e^{-i k b} \\
& -A e^{i k b}\left(\frac{\lambda}{a}+i k\right)-B e^{-i k b}\left(\frac{\lambda}{a}-i k\right) \\
= & D e^{-i k b} i k+i k D e^{-i k b}
\end{aligned}
$$

$$
\begin{aligned}
B e^{-i k b}\left(2 i k-\frac{\lambda}{a}\right)= & A e^{i k b}\left(\frac{\lambda}{a}\right) \\
& +D e^{-i t b} 2 i k .
\end{aligned}
$$

$$
\begin{aligned}
& \therefore B=A \cdot \frac{e^{\text {دikb }} \frac{\lambda}{a}}{\text { 2ik- } \frac{\lambda}{a}}+D \cdot \frac{2 i k}{2 i k-\frac{\lambda}{a}} \\
& \therefore\binom{C}{B}=\left(\begin{array}{ll}
\frac{2 i k a}{\text { Jika-i }} & \frac{\lambda}{\text { دika-i }} e^{-2 i k b} \\
\frac{\lambda}{\text { Jika-i }} e^{\text {دikb }} & \frac{\text { Jika }}{\text { } i k a-\lambda}
\end{array}\right)\binom{A}{D}
\end{aligned}
$$

unitary:
$2 i k a=\lambda$ orion.. scattering matrix $\underset{z}{\text { z in }} x$.
Ka.. dea bound state?

$$
i k=\frac{\lambda}{2 a}<0 \quad E_{g} \cdot(4-69)
$$

# Quantum Mechanics 1 

## Assignment 6

Due: May 9 (Thursday), 2013

1. If $|n\rangle$ is the $n$th harmonic oscillator eigenstate, evaluate:
(a) $\langle n| a^{\dagger s}|n\rangle,\langle n| a^{s}|n\rangle$
(b) $\langle n| x|n\rangle,\langle n| x^{2}|n\rangle,\langle n| x^{4}|n\rangle$
(c) $\langle n| p|n\rangle,\langle n| p^{2}|n\rangle,\langle n| p^{4}|n\rangle$
(d) $\langle m| a^{\dagger s}|n\rangle,\langle m| a^{s}|n\rangle$
(e) $\langle m| x|n\rangle,\langle m| x^{2}|n\rangle$
(f) $\langle m| p|n\rangle,\langle m| p^{2}|n\rangle$.

Hints: (1) Work in the creation space representation and use the known orthonormality of the harmonic oscillator states. (2) Express $x$ and $p$ in terms of $a$ and $a^{\dagger}$.

Remarks: This problem is not hard if you know and understand what you are doing. By brute force methods, it's a mess!
2. Coherent states

As shown in class, only the ground state of the harmonic oscillator has the minimum uncertainty $\Delta x \Delta p=\hbar / 2$. However, we can construct the minimum uncertainty wave functions in the following way. That state is called the "coherent state" and it is defined as

$$
\begin{equation*}
a|\alpha\rangle=\alpha|\alpha\rangle, \tag{1}
\end{equation*}
$$

that is, it is an eigenstate of an annihilation operator. Since $a$ is not hermitian, its eigenvalue $\alpha$ is in general complex.
(a) Compute $\langle x\rangle,\left\langle x^{2}\right\rangle,\langle p\rangle$, and $\left\langle p^{2}\right\rangle$ in the state $|\alpha\rangle$, and show that $\Delta x \Delta p=\hbar / 2$.
(b) Show that the state $|\alpha\rangle$ can be written in the form

$$
\begin{equation*}
|\alpha\rangle=C e^{\alpha a^{\dagger}}|0\rangle \tag{2}
\end{equation*}
$$

Hint: Recall the definition of the exponential of the operator given in class.
(c) Prove that if $f\left(a^{\dagger}\right)$ is any polynomial in $a^{\dagger}$, then

$$
\begin{equation*}
a f\left(a^{\dagger}\right)|0\rangle=\frac{d f\left(a^{\dagger}\right)}{d a^{\dagger}}|0\rangle \tag{3}
\end{equation*}
$$

Using this fact, compute $C$.
(d) On the other hand, since the set of the energy eigenstates $\{|n\rangle\}$ forms a complete set, the state $|\alpha\rangle$ can be expanded as

$$
\begin{equation*}
|\alpha\rangle=\sum_{n=0}^{\infty} c_{n}|n\rangle \tag{4}
\end{equation*}
$$

Show that the coefficients $c_{n}$ are given by

$$
\begin{equation*}
c_{n}=\frac{\alpha^{n}}{\sqrt{n!}} c_{0} \tag{5}
\end{equation*}
$$

(e) By normalizing $|\alpha\rangle$, show that $c_{0}=\exp \left(-|\alpha|^{2} / 2\right)$.
(f) From parts (d) and (e), you can find the probability for the state $|\alpha\rangle$ to contain $n$ quanta. Find it, and it is called the Poisson distribution.
(g) Finally, compute the average number of quanta in the coherent state. That is, compute $\langle\alpha| a^{\dagger} a|\alpha\rangle$.
3. The Hamiltonian of a particle can be expressed in the form

$$
\begin{equation*}
H=\epsilon_{1} a^{\dagger} a+\epsilon_{2}\left(a+a^{\dagger}\right), \quad\left[a, a^{\dagger}\right]=1 \tag{6}
\end{equation*}
$$

where $\epsilon_{1}$ and $\epsilon_{2}$ are constants.
(a) Find the energies of the eigenstates. (You are not required to find the corresponding state functions.)
(b) The same exept that the commutator of $a$ and $a^{\dagger}$ is $\left[a, a^{\dagger}\right]=q^{2}$, where $q$ is a pure number.
(Hint: Keeping the harmonic oscillator in mind, introduce new annihi9lation and creation operators $b$ and $b^{\dagger}$ by writing

$$
\begin{equation*}
b=\alpha a+\beta, \quad b^{\dagger}=\alpha a^{\dagger}+\beta \tag{7}
\end{equation*}
$$

and choose the constants $\alpha$ and $\beta$ wisely.

