GEST 011, Newton's Clock & Heisenberg's Dice, Fall 2013

Quantum Theory in a Nutshell

Mahn-Soo Choi (Korea Univ)

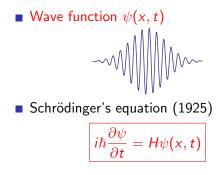
State Variables

State of a Particle in Motion

Classical Mechanics

Sir Isaac Newton (1643-1727) http://wikipedia.org/

- Position r & Velocity v
- Newton's equation of motion
 (force) = (mass) × (acceleration)


$$\boldsymbol{F} = m\frac{d\boldsymbol{v}}{dt} = m\frac{d^2\boldsymbol{r}}{dt^2}$$

State of a Particle in Motion

Quantum Mechanics

Erwin Schrödinger (1887-1961) http://wikipedia.org/

What is Wave Function?

Probabilistic Interpretation of Ψ

(Born, Z. Phys. 1926b; Born, Z. Phys. 1926a)

Max Born (1882-1970)

The absolute square of the wave function gives the probability density to find the particle at a position between x and x + dx:

$$(\text{probability}) = |\psi(x, t)|^2 dx$$

The Quantum Principia

(Fundamental Postulates)

The Copenhagen School

Niels Bohr (1885-1962)

Werner Heisenberg (1901-1976)

The Copenhagen Interpretation (1927)

Bohr and Heisenberg chatting http://wikipedia.org/

- A system is completely described by a wave function. (Heisenberg)
- The description of nature is essentially probabilistic. (Born)
- Measuring devices are essentially classical devices, and measure classical properties.
- After the measurement, the wave function "collapses" into one of the eigenstate of the quantity.

Fundamental Postulates

(The Copenhagen Interpretation)

- **1** The state of a particle in motion is described by the wave function $\psi(x, t)$.
- 2 The dynamics is governed by Schrödinger's equation of motion

$$i\hbar \frac{\partial}{\partial t}\psi(x,t) = H\psi(x,t)$$

- 3 Under a given condition, every physical quantity has a unique wave function^{*} $\psi_m(x)$ for each observed value[†] *m* of it.
- After a measurement, the wave function "collapses" into one of the eigenfunctions of the measured quantity.

*Called as eigenfunction [†]Called as eigenvalue

Bohr and Einstein Debate ...?

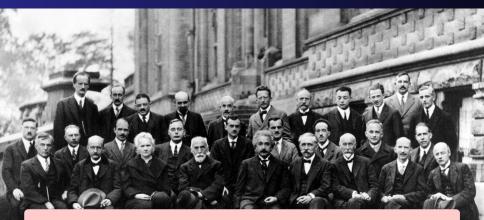

Niels Bohr with Albert Einstein at Paul Ehrenfest's home in Leiden in Dec 1925.

Image from Wikipedia

The 5th Solvay International Conference (1927) (on photons and electrons)

The 5th Solvay International Conference (1927) (on photons and electrons)

Einstein, "God does not play dice." **Bohr**, "Einstein, stop telling God what to do."

Photo from Wikipedia

References

M. Born, Z. Phys. 38, 803 (1926).

M. Born, Z. Phys. 37, 863 (1926).