

School of Electrical Engineering

Korea University

Data Structures and Algorithms

2014-02-05 Weiss, Data Structures & Alg's 1

- Hashing -

2012-2 학기 Weiss, Data Struct's & Alg's 2

Hashing

• O(1) search by hash-table lookup

• A hash function h(x) 정의

– Input key x에 대해 cell 주소 값을 계산

– 충돌(collision)을 최소화하도록 선택

- Hash function requirements: uniform distribution,

same computing times, generate few collisions

es times/cas theofmost in Y X then as long as

)(

)(







yx

yFY

xFX

Ideal hash table

// add up the ASCII values of the characters

// Not good when table size is big and hash value range is too small

// add up the weighted ASCII values of the first three characters

//For three characters, 26*26*26 = 17,576 possible combinations

// , but only 2,851 combinations in reality.

// Consider all characters

// use 32 instead of 27 for bit-shifting operation

2012-2 학기 Weiss, Data Struct's & Alg's 7

Hash Functions and Hash Tables

• A hash function h maps keys of a given type to
integers in a fixed interval [0, N - 1]

• Ex:
 h(x) = x mod N

is a hash function for integer keys

• The integer h(x) is called the hash value of key x

• The goal of a hash function is to uniformly
disperse keys in the range [0, N - 1]

2012-2 학기 Weiss, Data Struct's & Alg's 8

Hash Functions and Hash Tables

• A hash table for a given key type consists of

– Hash function h and Array (table) size N

• When implementing a dictionary with a hash table,
the goal is to store item

 (k, o) at index i = h(k)
• A collision occurs when two keys in the dictionary

have the same hash value

• Collision handing schemes:
– Chaining: colliding items in the list

– Open addressing: colliding item in a different cell
of the table

2012-2 학기 Weiss, Data Struct's & Alg's 9

Design options of hashing

• load factor < 1.0

• table size S – choose a prime number

• Data store - array/ list

• hash function F

• alternative location on collision:

 - chaining

 - open addressing



2012-2 학기 Weiss, Data Struct's & Alg's 10

Collision resolution

• Separate chaining
 - add into the linear list on collision

 - search time is not constant .

• Open addressing
 - Linear probing

 - Quadratic probing

 - Double hashing

• Rehashing
 - Doubling the table size to 2N

 - cost of rehashing old data: O(N)

• Add the key into the linear list on collision

• Search time is dependent on the length of
the list.

• Find operation

• Insert opetation

Separate chaining

2014-02-05 Weiss, Data Structures & Alg's 11

Example of separate chaining

Type declaration

Type declaration

Initialization routine

Initialization routine

Find routine

Insert routine

2012-2 학기 Weiss, Data Struct's & Alg's 19

Linear Probing

• Linear probing handles collisions by placing
the colliding item in the next (circularly)
available table cell

• Each table cell inspected is referred to as a
“probe”

• Colliding items lump together, causing future
collisions to cause a longer sequence of
probes

2012-2 학기 Weiss, Data Struct's & Alg's 20

Linear Probing

• Example:
– h(x)  x mod 13

– Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this
order

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

 41 18 44 59 32 22 31 73

Figure 5.11 Open addressing hash table with linear probing, after each insertion

89, 18, 49, 58, 69

Figure 5.12 Number of probes plotted against load factor for

 linear probing (dashed) and random strategy

 (S is successful search, U is unsuccessful search, and I is insertion)

Figure 5.13 Open addressing hash table with quadric probing, after each insertion

89, 18, 49, 58, 69

Type declaration for open addressing

Type declaration for open addressing

Initialization for open addressing

2014-02-05 Weiss, Data Structures & Alg's 26

2014-02-05 Weiss, Data Structures & Alg's 27

Find for hashing with QP

2014-02-05 Weiss, Data Structures & Alg's 28

Insert for hashing with QP

2012-2 학기 Weiss, Data Struct's & Alg's 29

Double Hashing

• Double hashing uses a secondary hash
function h2(k) and handles collisions by placing
an item in the first available cell of the series

 (i + j*h2(k)) mod N for j  0, 1, … , N - 1

• The secondary hash function h2(k) cannot have
zero values

• The table size N must be a prime to allow
probing of all the cells

Double Hashing Example

• Bad one
(Ex) hash2(X) = X mod 9 and we want to insert 99

– The function must never evaluate to zero

– Make sure all cells can e pro

• Good one
(Ex) hash2(X) = R – (X mod R), where R is a prime

smaller than TableSize

– Figure 5.18 for R = 7

(Ex) hash2(49) = 7 – 0 = 7

2014-02-05 Weiss, Data Structures & Alg's 30

Figure 5.18 Open addressing hash table with double hashing, after each insertion

89, 18, 49, 58, 69

• If the table gets too full, the running time for
the operations will start taking too long.

• To build another table that is about twice as
big with a new hash function, computing
new hash values for each element.

• Expensive operation requiring O(N) running
time

Rehashing

2014-02-05 Weiss, Data Structures & Alg's 32

Figure 5.20 Open addressing hash table

with linear probing after 23 is inserted

Figure 5.19 Open addressing hash table

with linear probing with input

13,15,6,24

Figure 5.21 Open addressing hash

table after rehashing

• When the amount of data is too large to fit
in main memory

• Main concern is the number of disk
accesses for retrieving data

Extendible Hashing

2014-02-05 Weiss, Data Structures & Alg's 36

 Figure 5.23

 Extendible hashing: original data

insert 100100

Figure 5.24 Extendible hashing : after insertion of 100100 and directory split

insert 000000

Figure 5.25 Extendible hashing : after insertion of 000000 and leaf split

