
Computer Architecture

Computer Arithmetic

Lynn Choi

Korea University

Arithmetic & Logic Unit

Roles of ALU

Does the computations

Everything else in the computer is there to service this unit

Handles integers

FPU (floating point unit) – arithmetic unit that handles floating point (real) numbers

Implementation

All microprocessors has integer ALUs

On-chip or off-chip FPU (co-processor)

ALU inputs and outputs

Prentice Hall Inc. All rights reserved

Integer Representation

Only have 0 & 1 to represent everything

Two representative representations

Sign-magnitude

Two’s compliment

Sign-magnitude

Left most bit is sign bit

0 means positive

1 means negative

Example

+18 = 00010010

-18 = 10010010

Problems

Need to consider both sign and magnitude in arithmetic

Two representations of zero (+0 and -0)

2’s Complement

Given N, 2’s complement of N with n bits

2n – N = (2n – 1) – N + 1 = bit complement of N + 1

32 bit number

Positive numbers : 0 (x00000000) to 231 –1 (x7FFFFFFF)

Negative numbers : -1 (xFFFFFFFF) to – 231 (x8000000)

Like sign-magnitude, MSB represents the sign bit

Examples

+3 = 011

+2 = 010

+1 = 001

+0 = 000

 -1 = 111

 -2 = 110

 -3 = 101

 -4 = 100

Characteristics of 2’s Complement

A single representation of zero

Negation is fairly easy (bit complement of N + 1)
3 = 00000011

Boolean complement gives 11111100

Add 1 to LSB 11111101

Overflow occurs only
When the sign bit of two numbers are the same but the result has the opposite sign
(V = Cn Cn-1)

Arithmetic works easily (see later)
To perform A – B, take the 2’s complement of B and add it to A

A + (2n – B) = A – B + 2n (if A >= B, ignore the carry)

 = 2n – (B – A) (if B > A, 2’s complement of B – A)

Operation A B Overflow Condition

A + B + + -

A + B - - +

A - B + - -

A - B - + +

Range of Numbers

8 bit 2’s complement

+127 = 01111111 = 27 -1

 -128 = 10000000 = -27

16 bit 2’s complement

+32767 = 011111111 11111111 = 215 - 1

 -32768 = 100000000 00000000 = -215

N bit 2’s complement

 - 2n-1 ~ 2n-1 - 1

Conversion Between Lengths

Positive number – pack with leading zeros

+18 = 00010010

+18 = 00000000 00010010

Negative numbers – pack with leading ones

-18 = 10010010

-18 = 11111111 10010010

Sign-extension

i.e. pack with MSB (sign bit)

Addition and Subtraction

Addition

Normal binary addition

Monitor sign bit for overflow

Subtraction

Take the two’s complement of subtrahend and add to minuend

i.e. a - b = a + (-b)

So we only need adder and complement circuits

Hardware for Addition and Subtraction

Prentice Hall Inc. All rights reserved

Multiplication

Example

 1011 Multiplicand (11 decimal)

 x 1101 Multiplier (13 decimal)

 1011 Partial products

 0000 Note: if multiplier bit is 1 then copy multiplicand (place value)

 1011 otherwise put zero

 1011

 10001111 Product (143 decimal)

Principles

Work out partial product for each digit

Shift each partial product

Add partial products

Note: need double length result

Binary Multiplier (Unsigned)

Prentice Hall Inc. All rights reserved

Execution of Example

Prentice Hall Inc. All rights reserved

Flowchart for Unsigned Binary Multiplication

Prentice Hall Inc. All rights reserved

Signed Multiplication

Unsigned binary multiplication algorithm

Does not work for signed multiplication!

Solution 1

Convert to positive if required

Multiply as above

If signs were different, negate answer

Solution 2

Booth’s algorithm

Booth’s Algorithm

Prentice Hall Inc. All rights reserved

Example of Booth’s Algorithm

Prentice Hall Inc. All rights reserved

Examples

Prentice Hall Inc. All rights reserved

Division

Unsigned binary division

Can be implemented by shift and subtract

Signed binary division

More complex than multiplication

The unsigned binary division algorithm can be extended to negative numbers.

Division of Unsigned Binary Integers

 Unsigned binary division
 Can be implemented by shift and subtract

 The multiplication hardware can be used for the division as well

001111

1011

00001101

10010011

1011

001110
1011

1011

100

Quotient

Dividend

Remainder

Partial

Remainders

Divisor

Dividend = Quotient * Divisor + Remainder

Flowchart for Unsigned Binary Division

Prentice Hall Inc. All rights reserved

 Signed binary division
 More complex than multiplication

 The unsigned binary division algorithm can be extended to
negative numbers.

1. Load the divisor into M and the dividend into A, Q

 The dividend must be expressed as a 2n-bit 2’s complement number

2. Shift A, Q left by 1 bit position

3. If M and A have the same signs, perform A <- A – M; otherwise A + M

4. If the sign of A is the same as before or A = 0, Q0 <- 1; Otherwise Q0 <- 0
and restore the previous value of A

5. Repeat 2 through 4 n times

6. Remainder in A. If the signs of the divisor and dividend are the same, the
quotient is in Q; Otherwise, the quotient is the 2’s complement of Q

Signed Division

Examples of Signed Division

Prentice Hall Inc. All rights reserved

Real Numbers

Numbers with fractions

Could be done in pure binary

1001.1010 = 24 + 20 +2-1 + 2-3 =9.625

Where is the binary point?

Fixed? (Fixed-point)

Very limited

Very large numbers cannot be represented

Very small fractions cannot be represented

The same applies to results after computation

Moving? (Floating-point)

How do you show where it is?

Use the exponent to slide (place) the binary point

Example

976,000,000,000,000 = 9.76 * 1014

0.00000000000976 = 9.76 * 10-14

Floating Point Representation

 S x BE
Point is actually fixed between sign bit and body of mantissa

Exponent indicates place value (point position)

Base B

Implicit and need not be stored since it is the same for all numbers

Exponent E

Biased representation

A fixed value called bias (typically 2k-1 – 1 when k is the length of the exponent) is
subtracted to get the true exponent value

For 8-bit exponent, a bias of 127 is used and can represent –127 to 128

Nonnegative FP numbers can be treated as integers for comparison purposes

Significand (or Mantissa) S

Normalized representation

The most significant digit of the significand is nonzero

+/- 1.bbb…b x 2+/-E

Since the MSB is always 1, it is unnecessary to store this bit

Thus, a 23-bit significand is used to store a 24-bit significand with a value in [1, 2)

S
ig

n
 b

it

Biased

Exponent (E)
Significand or Mantissa (S)

Floating Point Examples

Prentice Hall Inc. All rights reserved

Expressible Numbers

Prentice Hall Inc. All rights reserved

Density of FP Numbers

 Note that
 The maximum number of different values that can be represented

with 32 bits is still 232.

 FP numbers are not spaced evenly along the number line

– Larger numbers are spaced more sparsely than smaller numbers

IEEE 754

Standard for floating point numbers

To facilitate the portability of FP programs among different processors

Supported by virtually all commercial microprocessors

IEEE 754 formats

32-bit single precision

8b exponent, 23b fraction

64-bit double precision

11b exponent, 52b fraction

Extended precision : double-extended

Characteristics

Range of exponents : single (-126 ~ 127), double (-1022 ~ 1023)

Zero is represented by all 0’s (exponent 0 and fraction 0)

An exponent of all 1’s with a fraction of 0 represents +, -

An exponent of 0 with a nonzero fraction represents a denormalized number

An exponent of all 1’s with a nonzero fraction represents a NaN (Not a Number) which is

used to signal various exceptions

NaN (Not a Number)

The following practices may cause NaNs.
All mathematical operations with a NaN as at least one operand

The divisions 0/0, ∞/∞, ∞/-∞, -∞/∞, and -∞/-∞

The multiplications 0×∞ and 0×-∞

The additions ∞ + (-∞), (-∞) + ∞ and equivalent subtractions.

Applying a function to arguments outside its domain

Taking the square root of a negative number

Taking the logarithm of zero or a negative number

Taking the inverse sine or cosine of a number which is less than -1 or

greater than +1.

IEEE 754 Formats

Prentice Hall Inc. All rights reserved

FP Arithmetic +/-

4 Phases

Check for zeros

Align the significand of a smaller number (adjust the exponent)

Add or subtract the significands

Normalize the result

FP Addition & Subtraction Flowchart

Prentice Hall Inc. All rights reserved

FP Arithmetic x/

Consists of the following phases

Check for zero

Add/subtract exponents

Multiply/divide significands (watch sign)

Normalize and round

Floating Point Multiplication

Prentice Hall Inc. All rights reserved

Floating Point Division

Prentice Hall Inc. All rights reserved

Homework 4

Read Chapter 4 (from Computer Organization and Design Textbook)

Exercise

3.2

3.4

3.6

3.8

3.12

