Computer Architectite？

Computer Arithmetic

Lynn Choi

Korea University

髙黻大學校

Arithmetic \& Logic Unit

国 Roles of ALU

- Does the computations
- Everything else in the computer is there to service this unit
- Handles integers
- FPU (floating point unit) - arithmetic unit that handles floating point (real) numbers
- Implementation
- All microprocessors has integer ALUs
- On-chip or off-chip FPU (co-processor)
- ALU inputs and outputs

Prentice Hall Inc. All rights reserved

Integer Representation

- Only have 0 \& 1 to represent everything
- Two representative representations
- Sign-magnitude
- Two's compliment
(5ign-magnitude
- Left most bit is sign bit
- 0 means positive
- 1 means negative
- Example
- $+18=00010010$
- $-18=10010010$
- Problems
- Need to consider both sign and magnitude in arithmetic
- Two representations of zero (+0 and -0)

2’s Complement

(aiven $\mathrm{N}, 2$'s complement of N with n bits

- $2^{\mathrm{n}}-\mathrm{N}=\underline{\left(2^{\mathrm{n}}-1\right)-\mathrm{N}}+1=\underline{\text { bit complement }}$ of $\mathrm{N}+1$
- 32 bit number
- Positive numbers : 0 (x00000000) to $2^{31}-1$ (x7FFFFFFF)
- Negative numbers : -1 (xFFFFFFFF) to -2^{31} (x8000000)
- Like sign-magnitude, MSB represents the sign bit

E Examples

- $+3=011$
- $+2=010$
- $+1=001$
- $+0=000$
- $-1=111$
- $-2=110$
- $-3=101$
- $-4=100$

Characteristics of 2 's Complement

- A single representation of zero
(agegation is fairly easy (bit complement of $\mathbf{N}+1$)
- $3=00000011$
- Boolean complement gives 11111100
- Add 1 to LSB

11111101

- Overflow occurs only
- When the sign bit of two numbers are the same but the result has the opposite sign ($\mathrm{V}=\mathrm{C}_{\mathrm{n}} \oplus \mathrm{C}_{\mathrm{n}}-1$)

Operation	\boldsymbol{A}	\boldsymbol{B}	Overflow Condition
$\boldsymbol{A}+\boldsymbol{B}$	+	+	-
$\boldsymbol{A}+\boldsymbol{B}$	-	-	+
$\boldsymbol{A}-\boldsymbol{B}$	+	-	-
$\boldsymbol{A}-\boldsymbol{B}$	-	+	+

[1 Arithmetic works easily (see later)

- To perform $\mathrm{A}-\mathrm{B}$, take the 2 's complement of B and add it to A
- $\mathrm{A}+\left(2^{\mathrm{n}}-\mathrm{B}\right)=\mathrm{A}-\mathrm{B}+2^{\mathrm{n}}$ (if $\mathrm{A}>=\mathrm{B}$, ignore the carry)
$=2^{\mathrm{n}}-(\mathrm{B}-\mathrm{A})\left(\right.$ if $\mathrm{B}>\mathrm{A}, 2^{\prime} \mathrm{s}$ complement of $\left.\mathrm{B}-\mathrm{A}\right)$

Range of Numbers

- 8 bit 2's complement
- $+127=01111111=2^{7}-1$
- $-128=10000000=-2^{7}$
- 16 bit 2 's complement
- $+32767=01111111111111111=2^{15}-1$
- $-32768=10000000000000000=-2^{15}$
- N bit 2's complement
- $-2^{\mathrm{n}-1} \sim 2^{\mathrm{n}-1}-1$

Conversion Between Lengths

- Positive number - pack with leading zeros
- $+18=00010010$
- $+18=0000000000010010$
[Negative numbers - pack with leading ones
- $-18=10010010$
- $-18=1111111110010010$
- Sign-extension
- i.e. pack with MSB (sign bit)

Addition and Subtraction

- Addition
- Normal binary addition
- Monitor sign bit for overflow
- Subtraction
- Take the two's complement of subtrahend and add to minuend
- i.e. $a-b=a+(-b)$
- So we only need adder and complement circuits

Hardware for Addition and Subtraction

$\mathrm{OF}=$ overflow bit
Prentice Hall Inc. All rights reserved
SW = Switch (select addition or subtraction)

Multiplication

- Example

1011 Multiplicand (11 decimal)

x 1101 Multiplier (13 decimal) 1011 Partial products
0000 Note: if multiplier bit is 1 then copy multiplicand (place value)
1011 otherwise put zero
1011
10001111 Product (143 decimal)

- Principles
- Work out partial product for each digit
- Shift each partial product
- Add partial products
- Note: need double length result

Binary Multiplier (Unsigned)

(a) Block Diagram

Prentice Hall Inc. All rights reserved

Execution of Example

C	A	Q	M	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add $\}$ First
0	0101	1110	1011	Shift $\}$ Cycle
0	0010	1111	1011	Shift $\} \begin{aligned} & \text { Second } \\ & \text { cycle }\end{aligned}$
0	1101	1111	1011	Add $\}$ Third
0	0110	1111	1011	Shift $\}$ Cycle
1	0001	1111	1011	Add 2 Fourth
0	1000	1111	1011	Shift \mathcal{S} Cycle

Prentice Hall Inc. All rights reserved

Product
in A, Q

Signed Multiplication

[Unsigned binary multiplication algorithm

- Does not work for signed multiplication!
- Solution 1
- Convert to positive if required
- Multiply as above
- If signs were different, negate answer
- Solution 2
- Booth's algorithm

Booth's Algorithm

Prentice Hall Inc. All rights reserved

Example of Booth's Algorithm

Prentice Hall Inc. All rights reserved

Examples

Prentice Hall Inc. All rights reserved
Figure 9.14 Examples Using Booth's Algorithm

Division

- Unsigned binary division
- Can be implemented by shift and subtract
- Signed binary division
- More complex than multiplication
- The unsigned binary division algorithm can be extended to negative numbers.

Division of Unsigned Binary Integers

Unsigned binary division

O Can be implemented by shift and subtract
O The multiplication hardware can be used for the division as well

Dividend = Quotient * Divisor + Remainder

Prentice Hall Inc. All rights reserved

Quotient in Q
Remainder in A

Signed Division

\square Signed binary division

O More complex than multiplication
O The unsigned binary division algorithm can be extended to negative numbers.

1. Load the divisor into M and the dividend into A, Q

- The dividend must be expressed as a 2n-bit 2's complement number

2. Shift A, Q left by 1 bit position
3. If M and A have the same signs, perform $A<-A-M$; otherwise $A+M$
4. If the sign of A is the same as before or $A=0, Q 0<-1$; Otherwise $Q 0<-0$ and restore the previous value of A
5. Repeat 2 through 4 n times
6. Remainder in A. If the signs of the divisor and dividend are the same, the quotient is in Q; Otherwise, the quotient is the 2's complement of Q

Examples of Signed Division

A	Q	M = 0011	A	Q	$\mathrm{M}=1101$
0000	0111	Initial value	0000	0111	Initial value
0000	1110	shift	0000	1110	shift
1101		subtract	1101		add
0000	1110	restore	0000	1110	restore
0001	1100	shift	0001	1100	shift
1110		subtract	1110		add
0001	1100	restore	0001	1100	restore
0011	1000	shift	0011	1000	shift
0000		subtract	0000		add
0000	1001	$\operatorname{set} \mathrm{Q}_{0}=1$	0000	1001	$\operatorname{set} \mathrm{Q}_{0}=1$
0001	0010	shift	0001	0010	shift
1110		subtract	1110		add
0001	0010	restore	0001	0010	restore

(a) (7)/(3)
(b) $(7) /(-3)$

A	Q	$\mathrm{M}=0011$	A	Q	$\mathrm{M}=1101$
1111	1001	Initial value	1111	1001	Initial value
1111	0010	shift	1111	0010	shift
0010		add	0010		subtract
1111	0010	restore	1111	0010	restore
1110	0100	shift	1110	0100	shift
0001		add	0001		subtract
1110	0100	restore	1110	0100	restore
1100	1000	shift	1100	1000	shift
1111		add	1111		subtract
1111	1001	$\operatorname{set} \mathrm{Q}_{0}=1$	1111	1001	$\operatorname{set} \mathrm{Q}_{0}=1$
1111	0010	shift	1111	0010	shift
0010		add	0010		subtract
1111	0010	restore	1111	0010	restore

Prentice Hall Inc. All rights reserved
(d) $(-7) /(-3)$

Real Numbers

(a) Numbers with fractions

- Could be done in pure binary
- $1001.1010=2^{4}+2^{0}+2^{-1}+2^{-3}=9.625$

国 Where is the binary point?

- Fixed? (Fixed-point)
- Very limited
- Very large numbers cannot be represented
- Very small fractions cannot be represented
- The same applies to results after computation
- Moving? (Floating-point)
- How do you show where it is?
- Use the exponent to slide (place) the binary point
- Example
- $976,000,000,000,000=9.76 * 10^{14}$
- $0.00000000000976=9.76 * 10^{-14}$

Floating Point Representation

Biased
 Exponent (E)

Significand or Mantissa (S)

$\pm \mathbf{S x}^{\mathrm{S}} \mathrm{B}^{ \pm \mathrm{E}}$

- Point is actually fixed between sign bit and body of mantissa
- Exponent indicates place value (point position)
- Base B
- Implicit and need not be stored since it is the same for all numbers
- Exponent E
- Biased representation
- A fixed value called bias (typically $2^{\mathrm{k}-1}-1$ when k is the length of the exponent) is subtracted to get the true exponent value
- For 8-bit exponent, a bias of 127 is used and can represent -127 to 128
- Nonnegative FP numbers can be treated as integers for comparison purposes
- Significand (or Mantissa) S
- Normalized representation
- The most significant digit of the significand is nonzero
- +/- 1.bbb...b x $2^{+/-E}$
- Since the MSB is always 1 , it is unnecessary to store this bit

Thus, a 23-bit significand is used to store a 24-bit significand with a value in [1, 2)

Floating Point Examples

sign of significand

(a) Format

$$
\begin{aligned}
1.1010001 \times 2^{10100} & =01001001110100010000000000000000=1.638125 \times 2^{20} \\
-1.1010001 \times 2^{10100} & =11001001110100010000000000000000=-1.638125 \times 2^{20} \\
1.1010001 \times 2^{-10100} & =00110101110100010000000000000000=1.638125 \times 2^{-20} \\
-1.1010001 \times 2^{-10100} & =10110101110100010000000000000000=-1.638125 \times 2^{-20}
\end{aligned}
$$

(b) Examples

Expressible Numbers

(a) Twos Complement Integers

(b) Floating-Point Numbers

Prentice Hall Inc. All rights reserved

Density of FP Numbers

- Note that

O The maximum number of different values that can be represented with 32 bits is still 2^{32}.
O FP numbers are not spaced evenly along the number line

- Larger numbers are spaced more sparsely than smaller numbers

IEDE 754

- Standard for floating point numbers

- To facilitate the portability of FP programs among different processors
- Supported by virtually all commercial microprocessors
[IEEE 754 formats
- 32-bit single precision
- 8b exponent, 23b fraction
- 64-bit double precision
- 11b exponent, 52 b fraction
- Extended precision : double-extended
- Characteristics
- Range of exponents : single (-126~127), double (-1022 ~ 1023)
- Zero is represented by all 0 's (exponent 0 and fraction 0)
- An exponent of all 1's with a fraction of 0 represents $+\infty,-\infty$
- An exponent of 0 with a nonzero fraction represents a denormalized number
- An exponent of all 1's with a nonzero fraction represents a NaN (Not a Number) which is used to signal various exceptions

NaN (Not a Number)

The following practices may cause NaNs.

- All mathematical operations with a NaN as at least one operand
- The divisions $0 / 0, \infty / \infty, \infty /-\infty,-\infty / \infty$, and $-\infty /-\infty$
- The multiplications $0 \times \infty$ and $0 \times-\infty$
- The additions $\infty+(-\infty),(-\infty)+\infty$ and equivalent subtractions.
- Applying a function to arguments outside its domain
- Taking the square root of a negative number
- Taking the logarithm of zero or a negative number
- Taking the inverse sine or cosine of a number which is less than -1 or greater than +1 .

IEEE 754 Formats

(a) Single format

(b) Double format

FP Arithmetic +/-

- 4 Phases
- Check for zeros
- Align the significand of a smaller number (adjust the exponent)
- Add or subtract the significands
- Normalize the result

IP Addition \& Subtraction Flowchart

FP Arithmetic x / \div

- Consists of the following phases
- Check for zero
- Add/subtract exponents
- Multiply/divide significands (watch sign)
- Normalize and round

Floating Point Multiplication

Prentice Hall Inc. All rights reserved

Floating Point Division

Homework 4

[0] Read Chapter 4 (from Computer Organization and Design Textbook)
[Exercise

- 3.2
- 3.4
- 3.6
- 3.8
- 3.12

