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Arithmetic & Logic Unit 

Roles of ALU 

Does the computations 

Everything else in the computer is there to service this unit 

Handles integers 

FPU (floating point unit) – arithmetic unit that handles floating point (real) numbers 

Implementation 

All microprocessors has integer ALUs 

On-chip or off-chip FPU (co-processor) 

ALU inputs and outputs 
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Integer Representation 

Only have 0 & 1 to represent everything 

Two representative representations 

Sign-magnitude 

Two’s compliment 

Sign-magnitude 

Left most bit is sign bit 

0 means positive 

1 means negative 

Example 

+18 = 00010010 

-18 = 10010010 

Problems 

Need to consider both sign and magnitude in arithmetic 

Two representations of zero (+0 and -0) 

 



2’s Complement 

Given N, 2’s complement of N with n bits 

2n – N = (2n – 1) – N + 1 = bit complement of N + 1 

32 bit number 

Positive numbers : 0 (x00000000) to 231 –1 (x7FFFFFFF) 

Negative numbers : -1 (xFFFFFFFF) to – 231 (x8000000) 

Like sign-magnitude, MSB represents the sign bit 

Examples 

+3 = 011 

+2 = 010 

+1 = 001 

+0 = 000 

 -1 = 111 

 -2 = 110 

 -3 = 101 

 -4 = 100 



Characteristics of 2’s Complement 

A single representation of zero 

Negation is fairly easy (bit complement of N + 1) 
3    =  00000011 

Boolean complement gives 11111100 

Add 1 to LSB   11111101 

Overflow occurs only 
When the sign bit of two numbers are the same but the result has the opposite sign 
(V = Cn   Cn-1) 

 

 

 

 

 

 

Arithmetic works easily (see later) 
To perform A – B, take the 2’s complement of B and add it to A 

A + (2n – B) = A – B + 2n  (if A >= B, ignore the carry) 

                       = 2n – (B – A)  (if B > A, 2’s complement of B – A) 

Operation A B Overflow Condition 

A + B + + - 

A + B - - + 

A - B + - - 

A - B - + + 



Range of Numbers 

8 bit 2’s complement 

+127 = 01111111 = 27 -1 

 -128 = 10000000 = -27 

16 bit 2’s complement 

+32767 = 011111111 11111111 = 215 - 1 

 -32768 = 100000000 00000000 = -215 

N bit 2’s complement 

 - 2n-1 ~ 2n-1 - 1 



Conversion Between Lengths 

Positive number – pack with leading zeros 

+18 =                00010010 

+18 = 00000000 00010010 

Negative numbers – pack with leading ones 

-18 =                10010010 

-18 = 11111111 10010010 

Sign-extension 

i.e. pack with MSB (sign bit) 



Addition and Subtraction 

Addition 

Normal binary addition 

Monitor sign bit for overflow 

Subtraction 

Take the two’s complement of subtrahend and add to minuend 

i.e. a - b = a + (-b) 

So we only need adder and complement circuits 



Hardware for Addition and Subtraction 
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Multiplication 

Example 

        1011    Multiplicand (11 decimal) 

        x 1101    Multiplier     (13 decimal) 

        1011    Partial products 

               0000      Note:  if multiplier bit is 1 then copy multiplicand (place value) 

         1011            otherwise put zero             

           1011          

     10001111    Product (143 decimal) 

 

Principles 

Work out partial product for each digit 

Shift each partial product 

Add partial products 

Note: need double length result 

 



Binary Multiplier (Unsigned) 
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Execution of Example 
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Flowchart for Unsigned Binary Multiplication 
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Signed Multiplication 

Unsigned binary multiplication algorithm 

Does not work for signed multiplication! 

Solution 1 

Convert to positive if required 

Multiply as above 

If signs were different, negate answer 

Solution 2 

Booth’s algorithm 

 



Booth’s Algorithm 
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Example of Booth’s Algorithm 
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Examples 
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Division 

Unsigned binary division 

Can be implemented by shift and subtract 

Signed binary division 

More complex than multiplication 

The unsigned binary division algorithm can be extended to negative numbers. 



Division of Unsigned Binary Integers 

 Unsigned binary division 
 Can be implemented by shift and subtract 

 The multiplication hardware can be used for the division as well 

001111 

1011 

00001101 

10010011 

1011 

001110 
1011 

1011 

100 

Quotient 

Dividend 

Remainder 

Partial 

Remainders 

Divisor 

Dividend = Quotient * Divisor + Remainder 



Flowchart for Unsigned Binary Division 
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 Signed binary division 
 More complex than multiplication 

 The unsigned binary division algorithm can be extended to 
negative numbers. 

1. Load the divisor into M and the dividend into A, Q 

 The dividend must be expressed as a 2n-bit 2’s complement number 

2. Shift A, Q left by 1 bit position 

3. If M and A have the same signs, perform A <- A – M; otherwise A + M 

4. If the sign of A is the same as before or A = 0, Q0 <- 1; Otherwise Q0 <- 0 
and restore the previous value of A 

5. Repeat 2 through 4 n times 

6. Remainder in A. If the signs of the divisor and dividend are the same, the 
quotient is in Q; Otherwise, the quotient is the 2’s complement of Q 

 

Signed Division 



Examples of Signed Division 
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Real Numbers 

Numbers with fractions 

Could be done in pure binary 

1001.1010 = 24 + 20 +2-1 + 2-3 =9.625 

Where is the binary point? 

Fixed? (Fixed-point) 

Very limited 

Very large numbers cannot be represented 

Very small fractions cannot be represented 

The same applies to results after computation 

Moving? (Floating-point) 

How do you show where it is? 

Use the exponent to slide (place) the binary point 

Example 

976,000,000,000,000 = 9.76 * 1014 

0.00000000000976 = 9.76 * 10-14 



Floating Point Representation 

 S x BE 
Point is actually fixed between sign bit and body of mantissa 

Exponent indicates place value (point position) 

Base B 

Implicit and need not be stored since it is the same for all numbers 

Exponent E 

Biased representation 

A fixed value called bias (typically 2k-1 – 1 when k is the length of the exponent) is 
subtracted to get the true exponent value 

For 8-bit exponent, a bias of 127 is used and can represent –127 to 128 

Nonnegative FP numbers can be treated as integers for comparison purposes 

Significand (or Mantissa) S 

Normalized representation 

The most significant digit of the significand is nonzero 

+/- 1.bbb…b x 2+/-E 

Since the MSB is always 1, it is unnecessary to store this bit 

Thus, a 23-bit significand is used to store a 24-bit significand with a value in [1, 2) 

  

S
ig

n
 b

it
 

Biased 

Exponent (E) 
Significand or Mantissa (S) 



Floating Point Examples 
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Expressible Numbers 
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Density of FP Numbers 

 

 

 

 

 Note that 
 The maximum number of different values that can be represented 

with 32 bits is still 232. 

 FP numbers are not spaced evenly along the number line 

– Larger numbers are spaced more sparsely than smaller numbers 

 



IEEE 754 

Standard for floating point numbers 

To facilitate the portability of FP programs among different processors 

Supported by virtually all commercial microprocessors 

IEEE 754 formats 

32-bit single precision 

8b exponent, 23b fraction 

64-bit double precision 

11b exponent, 52b fraction 

Extended precision : double-extended 

Characteristics 

Range of exponents : single (-126 ~ 127), double (-1022 ~ 1023) 

Zero is represented by all 0’s (exponent 0 and fraction 0) 

An exponent of all 1’s with a fraction of 0 represents +, - 

An exponent of 0 with a nonzero fraction represents a denormalized number 

An exponent of all 1’s with a nonzero fraction represents a NaN (Not a Number) which is 

used to signal various exceptions 



NaN (Not a Number) 

The following practices may cause NaNs. 
All mathematical operations with a NaN as at least one operand  

The divisions 0/0, ∞/∞, ∞/-∞, -∞/∞, and -∞/-∞  

The multiplications 0×∞ and 0×-∞  

The additions ∞ + (-∞), (-∞) + ∞ and equivalent subtractions.  

Applying a function to arguments outside its domain 

Taking the square root of a negative number 

Taking the logarithm of zero or a negative number 

Taking the inverse sine or cosine of a number which is less than -1 or 

greater than +1.  

 



IEEE 754 Formats 
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FP Arithmetic +/- 

4 Phases 

Check for zeros 

Align the significand of a smaller number (adjust the exponent) 

Add or subtract the significands 

Normalize the result 



FP Addition & Subtraction Flowchart 
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FP Arithmetic x/ 

Consists of the following phases 

Check for zero 

Add/subtract exponents  

Multiply/divide significands (watch sign) 

Normalize and round 



Floating Point Multiplication 
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Floating Point Division 
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Homework 4 

Read Chapter 4 (from Computer Organization and Design Textbook) 

Exercise 

3.2 

3.4 

3.6 

3.8 

3.12 


