

Lynn Choi Korea University

Computer System Laboratory

Arithmetic & Logic Unit

Roles of ALU

- Does the computations
- Everything else in the computer is there to service this unit
- Handles integers
- ▶ **FPU** (floating point unit) arithmetic unit that handles floating point (real) numbers

Implementation

- All microprocessors has integer ALUs
- On-chip or off-chip FPU (co-processor)

ALU inputs and outputs

Prentice Hall Inc. All rights reserved

Integer Representation

- Only have 0 & 1 to represent everything
- Two representative representations
 - Sign-magnitude
 - ► Two's compliment

Sign-magnitude

- Left most bit is sign bit
 - 0 means positive
 - I means negative
- ► Example
 - ◆ +18 = 00010010
 - -18 = 10010010
- Problems
 - Need to consider both sign and magnitude in arithmetic
 - Two representations of zero (+0 and -0)

Given N, 2's complement of N with n bits

- $2^n N = (2^n 1) N + 1 =$ <u>bit complement of N + 1</u>
- ► 32 bit number
 - Positive numbers : 0 (x0000000) to $2^{31} 1$ (x7FFFFFFF)
 - Negative numbers : -1 (xFFFFFFF) to -2^{31} (x800000)
- Like sign-magnitude, MSB represents the sign bit
- Examples
 - ▶ +3 = 011
 - ▶ +2 = 010
 - ▶ +1 = 001
 - ► +0 = 000
 - ► -1 = 111
 - ► -2 = 110
 - ► -3 = 101
 - ► -4 = 100

Characteristics of 2's Complement

- A single representation of zero
- Negation is fairly easy (bit complement of N + 1)
 - ♦ 3 = 00000011
 - Boolean complement gives 11111100
 - Add 1 to LSB 11111101

Overflow occurs only

• When the sign bit of two numbers are the same but the result has the opposite sign $(V = C_n \oplus C_n-1)$

Operation	A	В	Overflow Condition
A + B	+	+	-
A + B	-	-	+
A - B	+	-	-
A - B	-	+	+

Arithmetic works easily (see later)

- ✤ To perform A B, take the 2's complement of B and add it to A
- $A + (2^n B) = A B + 2^n$ (if $A \ge B$, ignore the carry) = $2^n - (B - A)$ (if B > A, 2's complement of B - A)

Range of Numbers

- 8 bit 2's complement
 - $+127 = 01111111 = 2^7 1$
 - $-128 = 10000000 = -2^7$
- I6 bit 2's complement
 - $+32767 = 0111111111111111111 = 2^{15} 1$
 - $-32768 = 10000000 \ 0000000 = -2^{15}$
- N bit 2's complement
 - ▶ $-2^{n-1} \sim 2^{n-1} 1$

Conversion Between Lengths

- Positive number pack with leading zeros
 - ► +18 = 00010010
 - ► +18 = 00000000 00010010
- Negative numbers pack with leading ones
 - ► -18 = 10010010
 - ► -18 = 11111111 10010010
- Sign-extension
 - i.e. pack with MSB (sign bit)

Addition and Subtraction

Addition

- Normal binary addition
- Monitor sign bit for overflow
- Subtraction
 - Take the two's complement of subtrahend and add to minuend
 - ♦ i.e. a b = a + (-b)
 - So we only need adder and complement circuits

Hardware for Addition and Subtraction

OF = overflow bit SW = Switch (select addition or subtraction) Prentice Hall Inc. All rights reserved

Computer System Laboratory

Multiplication

Example	
1011	Multiplicand (11 decimal)
x 1101	Multiplier (13 decimal)
1011	Partial products
0000	Note: if multiplier bit is 1 then copy multiplicand (place value)
1011	otherwise put zero
1011	
10001111	Product (143 decimal)

Principles

- Work out partial product for each digit
- Shift each partial product
- Add partial products
- Note: need double length result

Binary Multiplier (Unsigned)

(a) Block Diagram

Prentice Hall Inc. All rights reserved

Computer System Laboratory

Execution of Example

С 0	A 0000	Q 1101	м 1011	Initial	Values
0	1011	1101	1011	Add	First
0	0101	1110	1011	Shift	Cycle
0	0010	1111	1011	Shift }	Second Cycle
0	1101	1111	1011	Add	Third
0	0110	1111	1011	Shift	Cycle
1	0001	1111	1011	Add }	Fourth
0	1000	1111	1011		Cycle

Prentice Hall Inc. All rights reserved

Computer System Laboratory

Signed Multiplication

Unsigned binary multiplication algorithm

- Does not work for signed multiplication!
- Solution 1
 - Convert to positive if required
 - Multiply as above
 - ► If signs were different, negate answer
- Solution 2
 - Booth's algorithm

Booth's Algorithm

Computer System Laboratory

Example of Booth's Algorithm

A	Q	Q ₋₁	M	Initial Values
0000	0011	0	0111	
1001	0011	0	0111	A A - M First
1100	1001	1	0111	Shift Cycle
1110	0100	1	0111	Shift } Second Cycle
0101	0100	1	0111	A A + M } Third
0010	1010	0	0111	Shift } Cycle
0001	0101	0	0111	Shift } Fourth Cycle

Prentice Hall Inc. All rights reserved

Examples

$\begin{array}{ccc} 0111 \\ \times 0011 & (0) \\ \hline 11111001 & 1-0 \\ 0000000 & 1-1 \\ \hline 000111 & 0-1 \\ \hline 00010101 & (21) \\ (a) (7) \times (3) = (21) \end{array}$	$\begin{array}{c} 0111\\ \times 1101 & (0)\\ \hline 11111001 & 1-0\\ 0000111 & 0-1\\ \underline{111001} & 1-0\\ \hline 11101011 & (-21)\\ (b) (7) \times (-3) = (-21) \end{array}$
$\begin{array}{ccc} 1001 \\ \times 0011 & (0) \\ \hline 000000111 & 1-0 \\ 0000000 & 1-1 \\ \hline 111001 & 0-1 \\ \hline 11101011 & (-21) \\ (c) (-7) \times (3) = (-21) \end{array}$	$\begin{array}{ccc} 1001 \\ \times 1101 & (0) \\ \hline 00000111 & 1-0 \\ 1111001 & 0-1 \\ \underline{000111} & 1-0 \\ \hline 00010101 & (21) \\ (d) (-7) \times (-3) = (21) \end{array}$

Prentice Hall Inc. All rights reserved

Figure 9.14 Examples Using Booth's Algorithm

Computer System Laboratory

Division

- Unsigned binary division
 - Can be implemented by shift and subtract

Signed binary division

- More complex than multiplication
- The unsigned binary division algorithm can be extended to negative numbers.

Division of Unsigned Binary Integers

Unsigned binary division

- O Can be implemented by shift and subtract
- The multiplication hardware can be used for the division as well

Dividend = Quotient * Divisor + Remainder

Flowchart for Unsigned Binary Division

Computer System Laboratory

Signed Division

Signed binary division

- **O** More complex than multiplication
- The unsigned binary division algorithm can be extended to negative numbers.
 - 1. Load the divisor into M and the dividend into A, Q
 - ◆ The dividend must be expressed as a 2n-bit 2's complement number
 - 2. Shift A, Q left by 1 bit position
 - 3. If M and A have the same signs, perform A <- A M; otherwise A + M
 - 4. If the sign of A is the same as before or A = 0, Q0 <- 1; Otherwise Q0 <- 0 and restore the previous value of A
 - 5. Repeat 2 through 4 n times
 - 6. Remainder in A. If the signs of the divisor and dividend are the same, the quotient is in Q; Otherwise, the quotient is the 2's complement of Q

A	Q	M = 0011	A	Q	M = 1101
0000	0111	Initial value	0000	0111	Initial value
0000 1101 0000	1110 1110	shift subtract restore	0000 1101 0000	1110 1110	shift add restore
0001 1110 0001	1100 1100	shift subtract restore	0001 1110 0001	1100 1100	shift add restore
0011 0000 0000	1000 1001	shift subtract set Q ₀ = 1	0011 0000 0000	1000 1001	shift add set Q ₀ = 1
0001 1110 0001	0010 0010	shift subtract restore	0001 1110 0001	0010 0010	shift add restore
	(a) (7)/(3)			(b) (7)/(-3)	
A	Q	M = 0011	A	Q	M = 1101
A 1111	Q 1001	M = 0011 Initial value	A 1111	Q 1001	M = 1101 Initial value
				· ·	-
1111 1111 0010	1001 0010	Initial value shift add	1111 1111 0010	1001 0010	Initial value shift subtract
1111 1111 0010 1111 1110 0001	1001 0010 0010 0100	Initial value shift add restore shift add	1111 0010 1111 1110 0001	1001 0010 0010 0100	Initial value shift subtract restore shift subtract
1111 1111 0010 1111 1110 0001 1110 1100 1111	1001 0010 0010 0100 0100 1000	Initial value shift add restore shift add restore shift add	1111 1111 0010 1111 1110 0001 1110 1100 1111	1001 0010 0010 0100 0100 1000	Initial value shift subtract restore shift subtract restore shift subtract

Prentice Hall Inc. All rights reserved

Computer System Laboratory

Real Numbers

- Numbers with fractions
- Could be done in pure binary
 - $\bullet \quad 1001.1010 = 2^4 + 2^0 + 2^{-1} + 2^{-3} = 9.625$
- Where is the binary point?
- Fixed? (Fixed-point)
 - Very limited
 - Very large numbers cannot be represented
 - Very small fractions cannot be represented
 - The same applies to results after computation
- Moving? (Floating-point)
 - How do you show where it is?
 - Use the exponent to slide (place) the binary point
 - Example
 - 976,000,000,000,000 = 9.76 * 10¹⁴
 - $0.0000000000976 = 9.76 * 10^{-14}$

Floating Point Representation

$\pm S \times B^{\pm E}$

Sign bit

Biased

Exponent (E)

- Point is actually fixed between sign bit and body of mantissa
- Exponent indicates place value (point position)
- Base B
 - Implicit and need not be stored since it is the same for all numbers
- Exponent E
 - Biased representation
 - A fixed value called bias (typically 2^{k-1} 1 when k is the length of the exponent) is subtracted to get the true exponent value

Significand or Mantissa (S)

- For 8-bit exponent, a bias of 127 is used and can represent -127 to 128
- Nonnegative FP numbers can be treated as integers for comparison purposes
- Significand (or Mantissa) S
 - Normalized representation
 - The most significant digit of the significand is nonzero
 - → +/- 1.bbb...b x 2^{+/-E}
 - Since the MSB is always 1, it is unnecessary to store this bit

Thus, a 23-bit significand is used to store a 24-bit significand with a value in [1, 2)
Computer System Laboratory

Floating Point Examples

(a) Format

(b) Examples

Prentice Hall Inc. All rights reserved

Expressible Numbers

(b) Floating-Point Numbers

Prentice Hall Inc. All rights reserved

Note that

- The maximum number of different values that can be represented with 32 bits is still 2³².
- **O** FP numbers are not spaced evenly along the number line
 - Larger numbers are spaced more sparsely than smaller numbers

IEEE 754

Standard for floating point numbers

- To facilitate the portability of FP programs among different processors
- Supported by virtually all commercial microprocessors

IEEE 754 formats

- ▶ 32-bit single precision
 - 8b exponent, 23b fraction
- ▶ 64-bit double precision
 - 11b exponent, 52b fraction
- Extended precision : double-extended

Characteristics

- ▶ Range of exponents : single (-126 ~ 127), double (-1022 ~ 1023)
- ► Zero is represented by all 0's (exponent 0 and fraction 0)
- An exponent of all 1's with a fraction of 0 represents $+\infty$, $-\infty$
- An exponent of 0 with a nonzero fraction represents a denormalized number
- An exponent of all 1's with a nonzero fraction represents a NaN (Not a Number) which is used to signal various exceptions

NaN (Not a Number)

The following practices may cause NaNs.

- All mathematical operations with a NaN as at least one operand
- The divisions 0/0, ∞/∞ , $\infty/-\infty$, $-\infty/\infty$, and $-\infty/-\infty$
- The multiplications $0 \times \infty$ and $0 \times -\infty$
- The additions $\infty + (-\infty), (-\infty) + \infty$ and equivalent subtractions.
- Applying a function to arguments outside its domain
 - Taking the square root of a negative number
 - Taking the logarithm of zero or a negative number
 - Taking the inverse sine or cosine of a number which is less than -1 or greater than +1.

IEEE 754 Formats

(a) Single format

(b) Double format

Prentice Hall Inc. All rights reserved

Computer System Laboratory

4 Phases

- Check for zeros
- Align the significand of a smaller number (adjust the exponent)
- Add or subtract the significands
- Normalize the result

FP Addition & Subtraction Flowchart

Computer System Laboratory

FP Arithmetic x/÷

Consists of the following phases

- Check for zero
- Add/subtract exponents
- Multiply/divide significands (watch sign)
- Normalize and round

MULTIPLY No No X = 0?Add Y = 0?Exponents Yes Yes Z 0 Subtract Bias RETURN Exponent Yes Report Overflow **Overflow?** No Yes Exponent Report Underflow? Underflow No Multiply Significands Normalize RETURN Round

Prentice Hall Inc. All rights reserved

Computer System Laboratory

Floating Point Division

Computer System Laboratory

Homework 4

- Read Chapter 4 (from Computer Organization and Design Textbook)
- **Exercise**
 - ► 3.2
 - ► 3.4
 - ▶ 3.6
 - ► 3.8
 - ▶ 3.12

