Communication Systems II
 [KECE322_OI]
 <2012-2nd Semester>

Lecture \#|9
2012. II. I2
School of Electrical Engineering
Korea University
Prof. Young-Chai Ko

Outline

- Signal design for bandlimited channels (Chap.8.2.I)
- Transmission of digital information via carrier modulation (Chap. 9)
- Suppose that the channel has a bandwidth of W.
- Then $C(f)=0$ for $|f|>W$; consequently, $X(f)=0$ for $|f|>W$.
- Note that the Nyquist criterion for zero ISI is $\sum_{m=-\infty}^{\infty} X\left(f+\frac{m}{T}\right)=T$.
- We distinguish three cases.
I. When $T<\frac{1}{2 W}$, or equivalently, $\frac{1}{T}>2 W$

2. When $T=\frac{1}{2 W}$
3. When $T>\frac{1}{2 W}$

- When $T<\frac{1}{2 W}$, or equivalently, $\frac{1}{T}>2 W, B(f)=\sum_{m=-\infty}^{\infty} X\left(f+\frac{m}{T}\right)$ consists of non-overlapping replicas of $X(f)$, separated by $1 / T$.

There is no choice for $X(f)$ to ensure $B(f) \equiv T$ in this case and there is no way that we can design a system with no ISI.

- When $T=1 / 2 W$, or equivalently, $1 / T=2 W$, the replication of $X(f)$ separated by $1 / T$ has the form as below

- In this case there exists only one $X(f)$ that results $B(f)=T$, namely,

$$
X(f)= \begin{cases}T, & (|f|<W) \\ 0, & \text { (otherwise) }\end{cases}
$$

- which corresponds to

$$
x(t)=\frac{\sin (\pi t / T)}{\pi t / T} \equiv \operatorname{sinc}\left(\frac{\pi t}{T}\right)
$$

- This means that the smallest value of T for which transmission with zero ISI is possible is $T=1 / 2 W$, and for this value, $x(t)$ has to be a sinc function.
- The difficulty with this choice of $x(t)$ is that it is non-causal and therefore nonrealizable.
- To make it realizable, usually a delayed version of it, i.e., $\operatorname{sinc}\left[\pi\left(t-t_{0}\right) / T\right]$ is used and t_{0} is chosen such that for $t<0$, we have $\operatorname{sinc}\left[\pi\left(t-t_{0}\right) / T\right] \approx 0$.
- Of course, with this choice of $x(t)$, the sampling time must be shifted to $m T+t_{0}$.

\uparrow A second difficulty with this pulse shape is that its rate of convergence to zero is low. The tails of $x(t)$ decays as $1 / t$, consequently, a small mistiming error in sampling the output of the matched filter at the demodulator results in an infinite series of ISI components.
- When $T>1 / 2 W, B(f)$ consists of overlapping replications of $X(f)$ separated by $1 / T$.
- In this case, there exists numerous choice for $X(f)$ such that $B(f) \equiv T$.

- A particular pulse spectrum for the $T>1 / 2 W$ case, that has desirable spectral properties and has been widely used in practice is the raised cosine spectrum.

$$
X_{r c}(f)= \begin{cases}T \\ \frac{T}{2}\left\{1+\cos \left[\frac{\pi t}{\beta}\left(|f|-\frac{1-\beta}{2 T}\right)\right]\right\} \\ 0 & \binom{\left.0 \leq|f| \leq \frac{1-\beta}{2 T}\right)}{\left(\frac{1-\beta}{2 T} \leq|f| \leq \frac{1+\beta}{2 T}\right.} \\ & \left(|f|>\frac{1+\beta}{2 T}\right)\end{cases}
$$

where $0 \leq \beta \leq 1$ is called roll-off factor.

- Raised cosine pulse

$$
x(t)=\frac{\sin (\pi t / T)}{\pi t / T} \frac{\cos (\pi \beta t / T)}{1-4 \beta^{2} t^{2} / T^{2}}=\operatorname{sinc}\left(\frac{t}{T}\right) \frac{\cos (\pi \beta t / T)}{1-4 \beta^{2} t^{2} / T^{2}}
$$

Note that $x(t)$ is normalized so that $x(0)=1$.

- Raised cosine pulse

$$
x(t)=\frac{\sin (\pi t / T)}{\pi t / T} \frac{\cos (\pi \beta t / T)}{1-4 \beta^{2} t^{2} / T^{2}}=\operatorname{sinc}\left(\frac{t}{T}\right) \frac{\cos (\pi \beta t / T)}{1-4 \beta^{2} t^{2} / T^{2}}
$$

For $\beta=0$, the pulse reduces to $x(t)=\operatorname{sinc}\left(\frac{t}{T}\right)$ and the symbol rate is $\frac{1}{T}=2 W$.

For $\beta=1$, the symbol rate is $\frac{1}{T}=W$.

In general, the tails of $x(t)$ decays as $1 / t^{3}$ for $\beta>0$. Consequently, a mistiming error in sampling leads to a series of ISI components that converges to a finite value.

- Special case when the channel is ideal with

$$
C(f)=\prod\left(\frac{f}{2 W}\right)
$$

In this case, we have

$$
X_{\mathrm{rc}}(f)=G_{T}(f) G_{R}(f)=\left|G_{T}(f)\right|^{2}
$$

- Ideally,

$$
G_{T}(f)=\sqrt{\left|X_{\mathrm{rc}}(f)\right|} e^{-j 2 \pi f t_{0}}
$$

and

$$
G_{R}(f)=G_{T}^{*}(f)
$$

Transmission of Digital Information Via Carrier Modulation

- Signal transmission with carrier

- We will learn
- Amplitude-modulation (pulse amplitude modulation: PAM)
- Phase-modulation (phase shift-keying: PSK)
- Quadrature-amplitude modulation (QAM)
- Frequency-shift keying (FSK)

Amplitude-Modulated Digital Signals

Transmitted signal waveform

$$
\begin{gathered}
u_{m}(t)=s_{m}(t) \cos \left(2 \pi f_{c} t\right) \\
U_{m}(f)=\frac{1}{2}\left[S_{m}\left(f-f_{c}\right)+S_{m}\left(f+f_{c}\right)\right]
\end{gathered}
$$

Energy of the bandpass signal waveforms

$$
\begin{aligned}
\mathcal{E}_{m} & =\int_{-\infty}^{\infty} u_{m}^{2}(t) d t=\int_{-\infty}^{\infty} s_{m}^{2}(t) \cos ^{2} 2 \pi f_{c} t d t \\
& =\frac{1}{2} \int_{-\infty}^{\infty} s_{m}^{2}(t) d t+\frac{1}{2} \int_{-\infty}^{\infty} s_{m}^{2}(t) \cos \left(4 \pi f_{c} t\right) d t \\
& =\frac{1}{2} \int_{-\infty}^{\infty} s_{m}^{2}(t) d t
\end{aligned}
$$

Geometric representation of bandpass signals

Baseband signal

$$
s_{m}(t)=s_{m} \psi(t), \quad m=1,2, \ldots, M
$$

Carrier modulated signals

$$
u_{m}(t)=s_{m}(t) \cos \left(2 \pi f_{c} t\right)=s_{m} \psi(t) \cos \left(2 \pi f_{c} t\right), \quad m=1,2, \ldots, M
$$

- Let

$$
\psi_{c}(t)=\sqrt{2} \psi(t) \cos \left(2 \pi f_{c} t\right)
$$

such that

$$
\begin{aligned}
\int_{-\infty}^{\infty} \psi_{c}^{2}(t) d t & =2 \int_{-\infty}^{\infty} \psi^{2}(t) \cos ^{2}\left(2 \pi f_{c} t\right) d t \\
& =\int_{-\infty}^{\infty} \psi^{2}(t) d t \overbrace{-\infty}^{\infty} \psi^{2}(t) \cos \left(2 \pi f_{c} t\right) d t \ldots \\
& =1
\end{aligned}
$$

Bandpass waveforms by the carrier-modulated basis function

$$
\begin{gathered}
u_{m}(t)=\frac{s_{m}}{\sqrt{2}} \psi_{c}(t)=s_{c m} \psi_{c}(t), \quad m=1,2, \ldots, M \\
\psi_{c}(t)=\sqrt{2} \psi(t) \cos \left(2 \pi f_{c} t\right)
\end{gathered}
$$

and

$$
s_{c m}=\frac{s_{m}}{\sqrt{2}}=(2 m-1-M) d / \sqrt{2}
$$

Demodulation and Detection of PAM

Transmit signal

$$
u_{m}(t)=s_{m}(t) \cos \left(2 \pi f_{c} t\right) \quad m=1,2, \ldots, M
$$

- Received signal

$$
r(t)=u_{m}(t)+n(t)=\frac{s_{m}}{\sqrt{2}} \psi_{c}(t)+n(t)
$$

- where

$$
n(t)=n_{c}(t) \cos \left(2 \pi f_{c} t\right)-n_{s}(t) \sin \left(2 \pi f_{c} t\right)
$$

Cross-correlator output

$$
\begin{aligned}
y(T) & =\int_{0}^{T} r(t) \psi_{c}(t) d t \\
& =\sqrt{2} s_{m} \int_{0}^{T} \psi^{2}(t) \cos ^{2}\left(2 \pi f_{c} t\right) d t+\sqrt{2} \int_{0}^{T} n(t) \psi(t) \cos \left(2 \pi f_{c} t\right) d t \\
& =\frac{s_{m}}{\sqrt{2}}+n=s_{c m}+n
\end{aligned}
$$

- Optimum detector

$$
D\left(y, s_{m}\right)=\left(y-s_{c m}\right)^{2}, \quad m=1,2, \ldots, M
$$

or equivalently

$$
C\left(y, s_{m}\right)=2 y s_{c m}-s_{c m}^{2}
$$

Representation of Band-Pass Signals

(e) Suppose a real-valued signal $s(t)$

$$
s_{+}(t)
$$

- Define the analytic signal $S_{+}(f)=2 u(f) S(f)$ such as its Fourier transform is given as

$$
s_{+}(t)=\int_{-\infty}^{\infty} S_{+}(f) e^{j 2 \pi f t} d t=\mathcal{F}^{-1}[2 u(f)] * \mathcal{F}^{-1}[S(f)]
$$

(-) Then the analytic signal can be obtained by taking inverse Fourier transform as

$$
\begin{aligned}
\mathcal{F}^{-1}[2 u(f)] & =\delta(t)+\frac{j}{\pi t} \\
\mathcal{F}^{-1}[S(f)] & =s(t)
\end{aligned}
$$

Then

$$
\begin{aligned}
s_{+}(t) & =\left[\delta(t)+\frac{j}{\pi t}\right] * s(t) \\
& =s(t)+\frac{j}{\pi t} * s(t)
\end{aligned}
$$

(-) We define $\hat{s}(t)$

$$
\hat{s}(t)=\frac{1}{\pi t} * s(t)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{s(\tau)}{t-\tau} d \tau
$$

- Define $h(t)$ as

$$
h(t)=\frac{1}{\pi t}, \quad-\infty<t<\infty
$$

- $h(t)$ is called a Hilbert transformer. The frequency response of this filter is

$$
H(f)=\int_{-\infty}^{\infty} h(t) e^{-j 2 \pi f t} d t=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{t} e^{-j 2 \pi f t}= \begin{cases}-j, & (f>0) \\ 0, & (f=0) \\ j, & (f<0)\end{cases}
$$

(- We observe that $|H(f)|=1$ and the phase response $\Theta(f)=-\frac{1}{2} \pi$ for $f>0$ and $\Theta(f)=\frac{1}{2} \pi$ for $f<0$.

- Therefor this filter is basically a 90° phase shifter for all frequencies in the input signal.

Q Equivalent low-pass representation by performing a frequency translation of $S_{+}(f)$

- Thus we define $S_{l}(f)$ as

$$
S_{l}(f)=S_{+}\left(f+f_{c}\right)
$$

- Equivalent time-domain relation is

$$
s_{l}(t)=s_{+}(t) e^{-j 2 \pi f_{c} t}=[s(t)+j \hat{s}(t)] e^{-j 2 \pi f_{c} t}
$$

\sim or equivalently

$$
s(t)+j \hat{s}(t)=s_{l}(t) e^{j 2 \pi f_{c} t}
$$

- In general, the signal $s_{l}(t)$ is complex-valued and may be expressed as

$$
s_{l}(t)=x(t)+j y(t)
$$

Q Then we can rewrite

$$
s(t)+j \hat{s}(t)=s_{l}(t) e^{j 2 \pi f_{c} t}=(x(t)+j y(t))\left(\cos \left(2 \pi f_{c} t\right)+j \sin \left(2 \pi f_{c} t\right)\right)
$$

- Hence we have

$$
\begin{aligned}
& s(t)=x(t) \cos \left(2 \pi f_{c} t\right)-y(t) \sin \left(2 \pi f_{c} t\right) \\
& \hat{s}(t)=x(t) \sin \left(2 \pi f_{c} t\right)+y(t) \cos \left(2 \pi f_{c} t\right)
\end{aligned}
$$

(-) Another representation of the signal is

$$
\left.s(t)=\Re\left\{[x(t)+j y(t)] e^{j 2 \pi f_{c} t}\right]\right\}=\Re\left[s_{l}(t) e^{j 2 \pi f_{c} t}\right]
$$

- The low-pass signal $s_{l}(t)$ is usually called the complex envelope of the real signal $s(t)$ and is basically the equivalent low-pass signal.

Q A third possible representation of a band-pass signal is obtained by expressing $s_{l}(t)$

$$
s_{l}(t)=a(t) e^{j \theta(t)}
$$

- where

$$
a(t)=\sqrt{x^{2}(t)+y^{2}(t)}, \quad \theta(t)=\tan ^{-1} \frac{y(t)}{x(t)}
$$

- Then

$$
\begin{aligned}
s(t) & =\Re\left[s_{l}(t) e^{j 2 \pi f_{c} t}\right] \\
& =\Re\left[a(t) e^{j\left[2 \pi f_{c} t+\theta(t)\right]}\right] \\
& =a(t) \cos \left(2 \pi f_{c} t+\theta(t)\right)
\end{aligned}
$$

~ The signal $a(t)$ is called the envelope of $s(t)$, and $\theta(t)$ is called the phase of $s(t)$.
(9) The Fourier transform of $s(t)$

$$
S(f)=\int_{-\infty}^{\infty} s(t) e^{-j 2 \pi f t} d t=\int_{-\infty}^{\infty}\left\{\Re\left[s_{l}(t) e^{j 2 \pi f_{c} t}\right]\right\} e^{-j 2 \pi f t} d t
$$

- Use the identity

$$
\Re(\zeta)=\frac{1}{2}\left(\zeta+\zeta^{*}\right)
$$

- Then

$$
\begin{aligned}
S(f) & =\frac{1}{2} \int_{-\infty}^{\infty}\left[s_{l}(t) e^{j 2 \pi f_{c} t}+s_{l}^{*}(t) e^{-j 2 \pi f_{c} t}\right] e^{-j 2 \pi f t} d t \\
& =\frac{1}{2}\left[S_{l}\left(f-f_{c}\right)+S_{l}^{*}\left(-f-f_{c}\right)\right]
\end{aligned}
$$

- The energy in the signal $s(t)$

$$
E=\int_{-\infty}^{\infty} s^{2}(t) d t=\int_{-\infty}^{\infty}\left\{\Re\left[s_{l}(t) e^{j 2 \pi f_{c} t}\right]\right\}^{2} d t
$$

- Using the $s_{l}(t)=a(t) e^{j \theta(t)}$

$$
\begin{aligned}
E & =\frac{1}{2} \int_{-\infty}^{\infty}\left|s_{l}(t)\right|^{2} d t+\frac{1}{2} \int_{-\infty}^{\infty}\left|s_{l}(t)\right|^{2} \cos \left[4 \pi f_{c} t+2 \theta(t)\right] d t \\
& \approx \frac{1}{2} \int_{-\infty}^{\infty}\left|s_{l}(t)\right|^{2} d t
\end{aligned}
$$

\sim where $\left|s_{l}(t)\right|$ is just the envelope $a(t)$ of $s(t)$

Representation of Linear Band-Pass Systems

Q A linear filter or system may be described either by its impulse response $h(t)$ or by its frequency response $H(f)$, which is the Fourier transform of $h(t)$.

- Since $h(t)$ is real,

$$
H^{*}(f)=H(f)
$$

- Let us define $H_{l}\left(f-f_{c}\right)$ as

$$
H_{l}\left(f-f_{c}\right)= \begin{cases}H(f), & (f>0) \\ 0, & (f<0)\end{cases}
$$

- Then

$$
H_{l}^{*}\left(f-f_{c}\right)= \begin{cases}0, & (f>0) \\ H^{*}(-f), & (f<0)\end{cases}
$$

- Using $H^{*}(f)=H(f)$, we have

$$
H(f)=H_{l}\left(f-f_{c}\right)+H_{l}^{*}\left(-f-f_{c}\right)
$$

- Inverse Fourier transform gives

$$
h(t)=h_{l}(t) e^{j 2 \pi f_{c} t}+h_{l}^{*}(t) e^{-j 2 \pi f_{c} t}=2 \Re\left[h_{l}(t) e^{j 2 \pi f_{c} t}\right]
$$

Response of a Band-Pass System to a Band-Pass Signal

Q The output of the band-pass system is also a band-pass signal, and, therefore, it can be expressed in the form

$$
r(t)=\Re\left[r_{l}(t) e^{j 2 \pi f_{c} t}\right]
$$

- where $r(t)$ is related to the input signal $s(t)$ and the impulse response $h(t)$ by the convolution integral

$$
r(t)=\int_{-\infty}^{\infty} s(\tau) h(t-\tau) d \tau
$$

- Equivalently the output of the system, expressed in the frequency domain, is

$$
R(f)=S(f) H(f)
$$

\sim which can be rewritten as

$$
R(f)=\frac{1}{2}\left[S_{l}\left(f-f_{c}\right)+S_{l}^{*}\left(-f-f_{c}\right)\right]\left[H\left(f-f_{c}\right)+H_{l}^{*}\left(-f-f_{c}\right)\right]
$$

~When $s(t)$ is a narrowband signal and $h(t)$ is the impulse response of a narrowband system, which follows

$$
S_{l}\left(f-f_{c}\right) H_{l}^{*}\left(-f-f_{c}\right)=0, \quad S_{l}^{*}\left(-f-f_{c}\right) H_{l}\left(f-f_{c}\right)=0
$$

- Therefore, it simplifies to

$$
\begin{aligned}
R(f) & =\frac{1}{2}\left[S_{l}\left(f-f_{c}\right) H_{l}\left(f-f_{c}\right)+S_{l}^{*}\left(-f-f_{c}\right) H_{l}^{*}\left(-f-f_{c}\right)\right] \\
& =\frac{1}{2}\left[R_{l}\left(f-f_{c}\right)+R_{l}^{*}\left(-f-f_{c}\right)\right]
\end{aligned}
$$

- where

$$
R_{l}(f)=S_{l}(f) H_{l}(f)
$$

- The output signal in the time domain

$$
r_{l}(t)=s_{l}(t) * h_{l}(t)=\int_{-\infty}^{\infty} s_{l}(\tau) h_{l}(t-\tau) d \tau
$$

- PAM signal

$$
s(t)=\Re\left[A_{m} g(t) e^{j 2 \pi f_{c} t}\right]
$$

- That is,

$$
s_{l}(t)=A_{m} g(t)
$$

