Communication Systems II

[KECE322_01] <2012-2nd Semester>

Lecture #19 2012. 11. 12 School of Electrical Engineering Korea University Prof. Young-Chai Ko

Outline

- Signal design for bandlimited channels (Chap.8.2.1)
- Transmission of digital information via carrier modulation (Chap. 9)

Suppose that the channel has a bandwidth of W.

- Then C(f) = 0 for |f| > W; consequently, X(f) = 0 for |f| > W.
- Note that the Nyquist criterion for zero ISI is $\sum_{m=-\infty}^{\infty} X\left(f + \frac{m}{T}\right) = T.$
- We distinguish three cases.

I. When
$$T < \frac{1}{2W}$$
, or equivalently, $\frac{1}{T} > 2W$

- 2. When $T = \frac{1}{2W}$
- 3. When $T > \frac{1}{2W}$

When $T < \frac{1}{2W}$, or equivalently, $\frac{1}{T} > 2W$, $B(f) = \sum_{m=-\infty}^{\infty} X\left(f + \frac{m}{T}\right)$ consists of

non-overlapping replicas of X(f), separated by 1/T.

• There is no choice for X(f) to ensure $B(f) \equiv T$ in this case and there is no way that we can design a system with no ISI.

When T = 1/2W, or equivalently, 1/T = 2W, the replication of X(f) separated by 1/T

has the form as below

In this case there exists only one X(f) that results B(f) = T, namely,

$$X(f) = \begin{cases} T, & (|f| < W) \\ 0, & (\text{otherwise}) \end{cases}$$

which corresponds to

$$x(t) = \frac{\sin(\pi t/T)}{\pi t/T} \equiv \operatorname{sinc}\left(\frac{\pi t}{T}\right)$$

Prof. Young-Chai Ko

This means that the smallest value of $\,T\,$ for which transmission with zero ISI is

possible is T = 1/2W, and for this value, x(t) has to be a sinc function.

- The **difficulty** with this choice of x(t) is that it is non-causal and therefore non-realizable.
- To make it realizable, usually a delayed version of it, i.e., $\operatorname{sinc}[\pi(t t_0)/T]$ is used and t_0 is chosen such that for t < 0, we have $\operatorname{sinc}[\pi(t - t_0)/T] \approx 0$.
- Of course, with this choice of x(t), the sampling time must be shifted to $mT + t_0$.

12년 11월 12일 월요일

✦

A second **difficulty** with this pulse shape is that its rate of convergence to zero is low. The tails of x(t) decays as 1/t, consequently, a small mistiming error in sampling the output of the matched filter at the demodulator results in an infinite series of ISI components. When T > 1/2W, B(f) consists of overlapping replications of X(f) separated by 1/T.

In this case, there exists numerous choice for X(f) such that $B(f) \equiv T$.

A particular pulse spectrum for the T > 1/2W case, that has desirable spectral

properties and has been widely used in practice is the *raised cosine spectrum*.

$$X_{rc}(f) = \begin{cases} T & \left(0 \le |f| \le \frac{1-\beta}{2T} \right) \\ \frac{T}{2} \left\{ 1 + \cos \left[\frac{\pi t}{\beta} \left(|f| - \frac{1-\beta}{2T} \right) \right] \right\} & \left(\frac{1-\beta}{2T} \le |f| \le \frac{1+\beta}{2T} \right) \\ 0 & \left(|f| > \frac{1+\beta}{2T} \right) \end{cases}$$

where $0 \le \beta \le 1$ is called roll-off factor.

Prof. Young-Chai Ko

0.4

0.2

-Т

 $\beta = 0$

0

-0.5T

Note that x(t) is normalized so that x(0) = 1.

2T

Т

0

ЗT

4T

12년 11월 12일 월요일

0.8

0.6

0.4

0.2

-0.2

Communication System II

Korea University

 $\beta = 1$

т

0.5T

Raised cosine pulse

$$x(t) = \frac{\sin(\pi t/T)}{\pi t/T} \frac{\cos(\pi \beta t/T)}{1 - 4\beta^2 t^2/T^2} = \operatorname{sinc}\left(\frac{t}{T}\right) \frac{\cos(\pi \beta t/T)}{1 - 4\beta^2 t^2/T^2}$$

• For $\beta = 0$, the pulse reduces to $x(t) = \operatorname{sinc}\left(\frac{t}{T}\right)$ and the symbol rate is $\frac{1}{T} = 2W$.

• For
$$\ eta=1,$$
 the symbol rate is $\ rac{1}{T}=W.$

In general, the tails of x(t) decays as $1/t^3$ for $\beta > 0$. Consequently, a mistiming error in sampling leads to a series of ISI components that converges to a finite value.

12년 11월 12일 월요일

Communication System II

Special case when the channel is ideal with

$$C(f) = \prod \left(\frac{f}{2W}\right)$$

In this case, we have

$$X_{\rm rc}(f) = G_T(f)G_R(f) = |G_T(f)|^2$$

Ideally,

$$G_T(f) = \sqrt{|X_{\rm rc}(f)|} e^{-j2\pi f t_0}$$

and

$$G_R(f) = G_T^*(f)$$

Prof. Young-Chai Ko

12년 11월 12일 월요일

Transmission of Digital Information Via Carrier Modulation

Signal transmission with carrier

- We will learn
 - Amplitude-modulation (pulse amplitude modulation: PAM)
 - Phase-modulation (phase shift-keying: PSK)
 - Quadrature-amplitude modulation (QAM)
 - Frequency-shift keying (FSK)

Amplitude-Modulated Digital Signals

Transmitted signal waveform

$$u_m(t) = s_m(t)\cos(2\pi f_c t)$$

$$U_m(f) = \frac{1}{2} \left[S_m(f - f_c) + S_m(f + f_c) \right]$$

Energy of the bandpass signal waveforms

$$\begin{aligned} \mathcal{E}_m &= \int_{-\infty}^{\infty} u_m^2(t) \, dt = \int_{-\infty}^{\infty} s_m^2(t) \cos^2 2\pi f_c t \, dt \\ &= \frac{1}{2} \int_{-\infty}^{\infty} s_m^2(t) \, dt + \frac{1}{2} \int_{-\infty}^{\infty} s_m^2(t) \cos(4\pi f_c t) \, dt \\ &= \frac{1}{2} \int_{-\infty}^{\infty} s_m^2(t) \, dt \end{aligned}$$

Prof. Young-Chai Ko

Communication System II

Korea University

Geometric representation of bandpass signals

Baseband signal

$$s_m(t) = s_m \psi(t), \qquad m = 1, 2, \dots, M$$

Carrier modulated signals

$$u_m(t) = s_m(t)\cos(2\pi f_c t) = s_m\psi(t)\cos(2\pi f_c t), \quad m = 1, 2, \dots, M$$

Let

$$\psi_c(t) = \sqrt{2}\psi(t)\cos(2\pi f_c t),$$

such that

$$\int_{-\infty}^{\infty} \psi_c^2(t) dt = 2 \int_{-\infty}^{\infty} \psi^2(t) \cos^2(2\pi f_c t) dt$$
$$= \int_{-\infty}^{\infty} \psi^2(t) dt + \int_{-\infty}^{\infty} \psi^2(t) \cos(2\pi f_c t) dt = 0$$
$$= 1$$

Prof. Young-Chai Ko

Bandpass waveforms by the carrier-modulated basis function

$$u_m(t) = \frac{s_m}{\sqrt{2}}\psi_c(t) = s_{cm}\psi_c(t), \quad m = 1, 2, \dots, M$$

$$\psi_c(t) = \sqrt{2\psi(t)\cos(2\pi f_c t)}$$

and

$$s_{cm} = \frac{s_m}{\sqrt{2}} = (2m - 1 - M)d/\sqrt{2}$$

Prof. Young-Chai Ko

12년 11월 12일 월요일

Communication System II

Demodulation and Detection of PAM

Transmit signal

$$u_m(t) = s_m(t)\cos(2\pi f_c t)$$
 $m = 1, 2, ..., M$

$$r(t) = u_m(t) + n(t) = \frac{s_m}{\sqrt{2}}\psi_c(t) + n(t)$$

$$n(t) = n_c(t)\cos(2\pi f_c t) - n_s(t)\sin(2\pi f_c t)$$

$$y(T) = \int_0^T r(t)\psi_c(t) dt$$

= $\sqrt{2}s_m \int_0^T \psi^2(t) \cos^2(2\pi f_c t) dt + \sqrt{2} \int_0^T n(t)\psi(t) \cos(2\pi f_c t) dt$
= $\frac{s_m}{\sqrt{2}} + n = s_{cm} + n$

Prof. Young-Chai Ko

Optimum detector

$$D(y, s_m) = (y - s_{cm})^2, \quad m = 1, 2, \dots, M$$

• or equivalently

$$C(y, s_m) = 2ys_{cm} - s_{cm}^2$$

Prof. Young-Chai Ko

Communication System II

Representation of Band-Pass Signals

$$s_{+}(t) = \int_{-\infty}^{\infty} S_{+}(f) e^{j2\pi ft} dt = \mathcal{F}^{-1}[2u(f)] * \mathcal{F}^{-1}[S(f)]$$

Then the analytic signal can be obtained by taking inverse Fourier transform as $\mathcal{F}^{-1}[2u(f)] = \delta(t) + \frac{j}{\pi t}$ $\mathcal{F}^{-1}[S(f)] = s(t)$

$$s_{+}(t) = \left[\delta(t) + \frac{j}{\pi t}\right] * s(t)$$
$$= s(t) + \frac{j}{\pi t} * s(t)$$

We define
$$\hat{s}(t)$$

$$\hat{s}(t) = \frac{1}{\pi t} * s(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{s(\tau)}{t - \tau} d\tau$$

Define
$$h(t)$$
 as
$$h(t) = \frac{1}{\pi t}, \qquad -\infty < t < \infty$$

• h(t) is called a Hilbert transformer. The frequency response of this filter is

$$H(f) = \int_{-\infty}^{\infty} h(t)e^{-j2\pi ft} dt = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{t}e^{-j2\pi ft} = \begin{cases} -j, & (f > 0) \\ 0, & (f = 0) \\ j, & (f < 0) \end{cases}$$

 $\begin{aligned} & \varTheta \\ & \blacksquare \\ & \texttt{We observe that } |H(f)| = 1 \ \texttt{and the phase response } \Theta(f) = -\frac{1}{2}\pi \ \texttt{ for } f > 0 \\ & \texttt{and } \Theta(f) = \frac{1}{2}\pi \ \texttt{ for } f < 0 \ . \end{aligned}$

- Therefor this filter is basically a 90° phase shifter for all frequencies in the input signal.
- Θ Equivalent low-pass representation by performing a frequency translation of $S_+(f)$

• Thus we define
$$S_l(f)$$
 as

$$S_l(f) = S_+(f + f_c)$$

Equivalent time-domain relation is $s_l(t) = s_+(t)e^{-j2\pi f_c t} = [s(t) + j\hat{s}(t)]e^{-j2\pi f_c t}$

or equivalently

$$s(t) + j\hat{s}(t) = s_l(t)e^{j2\pi f_c t}$$

In general, the signal $s_l(t)$ is complex-valued and may be expressed as $s_l(t) = x(t) + jy(t)$

Then we can rewrite

$$s(t) + j\hat{s}(t) = s_l(t)e^{j2\pi f_c t} = (x(t) + jy(t))(\cos(2\pi f_c t) + j\sin(2\pi f_c t))$$

Hence we have

$$s(t) = x(t)\cos(2\pi f_c t) - y(t)\sin(2\pi f_c t) \hat{s}(t) = x(t)\sin(2\pi f_c t) + y(t)\cos(2\pi f_c t)$$

Another representation of the signal is

$$s(t) = \Re\{[x(t) + jy(t)]e^{j2\pi f_c t}]\} = \Re[s_l(t)e^{j2\pi f_c t}]$$

- The low-pass signal $s_l(t)$ is usually called the complex envelope of the real signal s(t) and is basically the equivalent low-pass signal.
- Θ A third possible representation of a band-pass signal is obtained by expressing $s_l(t)$

$$s_l(t) = a(t)e^{j\theta(t)}$$

where

$$a(t) = \sqrt{x^2(t) + y^2(t)}, \qquad \theta(t) = \tan^{-1} \frac{y(t)}{x(t)}$$

Then

$$s(t) = \Re[s_l(t)e^{j2\pi f_c t}]$$

= $\Re[a(t)e^{j[2\pi f_c t + \theta(t)]}]$
= $a(t)\cos(2\pi f_c t + \theta(t))$

- The signal a(t) is called the envelope of s(t), and $\theta(t)$ is called the phase of s(t).

$$\begin{aligned} & \widehat{\mathbf{S}} \quad \text{The Fourier transform of } s(t) \\ & S(f) = \int_{-\infty}^{\infty} s(t) e^{-j2\pi ft} \, dt = \int_{-\infty}^{\infty} \{ \Re[s_l(t) e^{j2\pi f_c t}] \} e^{-j2\pi ft} \, dt \end{aligned}$$

Use the identity

$$\Re(\zeta) = \frac{1}{2}(\zeta + \zeta^*)$$

Then

$$S(f) = \frac{1}{2} \int_{-\infty}^{\infty} [s_l(t)e^{j2\pi f_c t} + s_l^*(t)e^{-j2\pi f_c t}]e^{-j2\pi f t} dt$$

$$= \frac{1}{2} [S_l(f - f_c) + S_l^*(-f - f_c)]$$

The energy in the signal s(t)

$$E = \int_{-\infty}^{\infty} s^2(t) dt = \int_{-\infty}^{\infty} \{ \Re[s_l(t)e^{j2\pi f_c t}] \}^2 dt$$

• Using the $s_l(t) = a(t)e^{j\theta(t)}$

$$E = \frac{1}{2} \int_{-\infty}^{\infty} |s_l(t)|^2 dt + \frac{1}{2} \int_{-\infty}^{\infty} |s_l(t)|^2 \cos[4\pi f_c t + 2\theta(t)] dt$$
$$\approx \frac{1}{2} \int_{-\infty}^{\infty} |s_l(t)|^2 dt$$

~ where $|s_l(t)|$ is just the envelope a(t) of s(t)

Representation of Linear Band-Pass Systems

- A linear filter or system may be described either by its impulse response h(t) or by its frequency response H(f), which is the Fourier transform of h(t).
 - Since h(t) is real,

$$H^*(f) = H(f)$$

• Let us define
$$H_l(f - f_c)$$
 as

$$H_l(f - f_c) = \begin{cases} H(f), & (f > 0) \\ 0, & (f < 0) \end{cases}$$

Then

$$H_l^*(f - f_c) = \begin{cases} 0, & (f > 0) \\ H^*(-f), & (f < 0) \end{cases}$$

Using
$$H^*(f) = H(f)$$
, we have

$$H(f) = H_l(f - f_c) + H_l^*(-f - f_c)$$

Inverse Fourier transform gives

$$h(t) = h_l(t)e^{j2\pi f_c t} + h_l^*(t)e^{-j2\pi f_c t} = 2\Re[h_l(t)e^{j2\pi f_c t}]$$

Response of a Band-Pass System to a Band-Pass Signal

The output of the band-pass system is also a band-pass signal, and, therefore, it can be expressed in the form

$$r(t) = \Re[r_l(t)e^{j2\pi f_c t}]$$

where r(t) is related to the input signal s(t) and the impulse response h(t) by the convolution integral

$$r(t) = \int_{-\infty}^{\infty} s(\tau)h(t-\tau) d\tau$$

Equivalently the output of the system, expressed in the frequency domain, is

$$R(f) = S(f)H(f)$$

which can be rewritten as

$$R(f) = \frac{1}{2} [S_l(f - f_c) + S_l^*(-f - f_c)] [H(f - f_c) + H_l^*(-f - f_c)]$$

~ When s(t) is a narrowband signal and h(t) is the impulse response of a narrowband system, which follows

$$S_l(f - f_c)H_l^*(-f - f_c) = 0, \qquad S_l^*(-f - f_c)H_l(f - f_c) = 0$$

Therefore, it simplifies to

$$R(f) = \frac{1}{2} [S_l(f - f_c)H_l(f - f_c) + S_l^*(-f - f_c)H_l^*(-f - f_c)]$$

= $\frac{1}{2} [R_l(f - f_c) + R_l^*(-f - f_c)]$

where

$$R_l(f) = S_l(f)H_l(f)$$

The output signal in the time domain

$$r_l(t) = s_l(t) * h_l(t) = \int_{-\infty}^{\infty} s_l(\tau) h_l(t-\tau) d\tau$$

$$s(t) = \Re[A_m g(t) e^{j2\pi f_c t}]$$

That is,

$$s_l(t) = A_m g(t)$$