AMAC: Traffic-Adaptive Sensor Network MAC Protocol through Variable Duty-Cycle Operations

ICC 2006

Computer System Laboratory

Motivation

Problems of existing WSN MAC protocols

- *Fixed duty cycle*: Each node has the same periodic interval (cycle time).
- Energy vs. latency tradeoff
 - Increasing cycle time can save energy but increase communication latency
 - Decreasing cycle time decrease latency but increase energy consumption

AMAC motivation

- Is it possible to have a variable duty cycle (variable cycle time)
 - Minimize idle listening for idle nodes
 - Maximize performance for busy nodes on the communication path

AMAC

- Variable duty cycle
 - Each node employs a different duty cycle depending on the traffic
- Variable active period
 - Each node can dynamically adjust *the duration of its active period*

AMAC: Variable Duty Cycle

Each node can have a variable cycle time.

- Busy nodes on the communication path have a short cycle time to reduce latency
 - If there is traffic
 - Receiver reduces its cycle time to minimum cycle time (T)
- ► Idle nodes have a long cycle time to minimize idle listening
 - If there is no traffic
 - Each node doubles their cycle time automatically.

2^N variation of cycle times: T, 2T, 4T, 8T, ...

- Faster nodes can always synchronize with slower nodes
- Every node doubles their clock cycle time on natural alignment boundary to avoid offset skew.
 - For example, a cycle time of 8T must start on 0T, 8T, 16T, 24T, etc.

AMAC: Variable Duty Cycle

AMAC: Variable Active Period

Remove the unnecessary RTS period during idle cycle

- Communication SYNC
 - A sender transmits it to notify the presence of traffic.
 - Can use the ordinary clock SYNC packet with an extra bit field
- ► If a node receives communication SYNC, it extends its active period.
 - Each node can dynamically adjust the duration of its active period.

Computer System Laboratory

The network topology and design parameters used for simulations

Others

Protocol and packet format	
parameters	
Parameters	Values assumed
Control packet length	10 bytes
Data packet length	200 bytes
Contention	for SYNC: 31 slots
window	for others: 63 slots
Energy	Tx: 31mW Rx and Idle: 15mW
cycle time, T	
Maximum	23,104 ms
cycle time, 64T	

A-MAC vs. S-MAC

S-MAC

• Fixed cycle time of 4T.

A-MAC

- $AMAC_{variable_active_period}$ (Tmin = 4T, Tmax = 4T)
 - Variable active period only
- $AMAC_{latency opt}$ (Tmin = T, Tmax = 4T)
 - Latency optimization
- $AMAC_{full}$ (Tmin = T, Tmax = 8T to 64T)
 - Full AMAC.

Traffic pattern

- ▶ The source generates 100 messages, each of which is 200 bytes long.
- We vary the traffic load by changing the packet inter-arrival time on the source node from 0 to 10 seconds.

Energy Consumption

The average per-node energy consumption in delivering 100 packets

- ► AMAC_{variable_active_period} can halve the energy consumption of S-MAC.
- ► AMAC_{latency opt} not only can reduce the latency but also can save energy effectively
- ► AMAC_{full} can further reduce the energy consumption (up to an order of magnitude)

Average Packet Latency

- As you increase the packet inter-arrival time, the latency diminishes.
 - The delay due to the contention is reduced.
- ► AMAC_{latency_opt} is very effective in reducing the latency
- ► AMAC_{full} is
 - Good for burst or high traffic (T_{MAX} : T, 2T, 4T, 8T)
 - Latency increase is substantial for low traffic ($T_{M\Delta x}$: 16T, 32T)

Computer System Laboratory

http://it.korea.ac.kr

Conclusion

AMAC is fundamentally different from existing protocols

- Each node can dynamically adjust
 - Duration of an active period
 - Duration of a duty cycle

Variable duty-cycle operation allows us to achieve both high performance and low energy consumption at the same time.

- Busy nodes can work with the highest duty-cycle.
- ► Idle nodes can work with the lowest duty-cycle.