
Operating System

Chapter 7. Memory Management

Lynn Choi
School of Electrical Engineering

Memory Management
 Terminology

 Requirements – should provide the following functions
 Relocation
 Protection
 Sharing

 Source: Pearson

Relocation, Protection & Sharing
 Relocation

 Programmers typically do not know which other programs will be resident in main
memory at the time of execution of their program

 Active processes need to be swapped in and out of main memory to maximize
processor utilization

 A process may need to be placed in a different area of memory when it is swapped
back

 Protection
 Processes need to acquire (read, write) permission to reference memory locations
 Memory references generated by a process must be checked at run time to check if

they have permissions (access rights)
 Mechanisms that support relocation also support protection

 Sharing
 Allow each process to access to the same copy of a program rather than having its

own separate copy
 Should provide controlled access to shared areas without compromising protection
 Mechanisms that support relocation also support sharing

Addressing Requirement of a Process
 For relocation, OS must know the location of program (instructions, data) as well as

its PCB

 Source: Pearson

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused 0

%esp (stack pointer)

Memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded from the
executable file

Process Image

 Source: Pearson

Logical/Physical Organization
 Main memory is organized as a linear array of bytes

− While this organization closely mirrors the machine HW, it does not correspond
to logical organization (user’s view of memory)

 Logical organization
 Users view programs as a collection of modules

− Modules can be written and compiled independently
− Different protection (read-only, execute-only) are given to different modules
− Module level sharing corresponds to the user’s way of viewing the problem

 Segmentation is the tool that most readily satisfies requirement

 Physical organization
 Computer memory is organized as main memory and secondary memory
 Main memory available for a program may not be sufficient

− Programmer does not know how much space will be available
 Cannot leave the programmer with the responsibility to manage memory
 Overlaying allows various modules to be assigned the same region of

memory

Memory Management
 Memory management techniques involve

 Segmentation, overlaying, and virtual memory, etc.
 We can classify these techniques as

− Memory partitioning – used in old operating systems
− Virtual memory based on paging and segmentation

 Fixed partitioning
 Equal-size partitions

− Any process which fit into the partition can be loaded into any available partition
− Swap out a process if all partitions are full
− Problems

 A program may be too big to fit in a partition
 Program needs to be designed with the use of overlays

 Internal fragmentation
 Wasted space due inside a partition

 Unequal-size partitions
− Can lessen both of the problems

 Large partitions can accommodate programs without overlays
 Small partitions can reduce internal fragmentation

Memory Management Techniques

 Source: Pearson

Equal-size vs Unequal-size Partition

 Source: Pearson

Memory Assignment with Fixed Partitioning

 Disadvantages
 The number of partitions

specified by the system
limits the number of
active processes

 Small jobs will not utilize
partition space efficiently

 Source: Pearson

Dynamic Partitioning
 Dynamic partitioning

 Process is allocated as much memory as it requires
 Partitions are of variable length and of variable numbers
 This technique was used by IBM’s mainframe operating system, OS/MVT

 External fragmentation
 Memory becomes more and more fragmented
 Memory utilization declines

 Compaction
 Technique to overcome external fragmentation
 OS shifts processes so that they are contiguous
 It is a time consuming process, wasting CPU time

Effect of Dynamic Partitioning

 Source: Pearson

Placement Algorithms
 First fit

 Search list from the beginning, choose the first free block that fits
 Can take linear time in total number of blocks (allocated and free)
 (+) Tend to retain large free blocks at the end
 (-) Leave small free blocks at beginning

 Next fit
 Like first-fit, but search the list starting from the end of previous search
 (+) Run faster than the first fit
 (-) Worse memory utilization than the first fit

 Best fit
 Search the list, choose the free block with the closest size that fits
 (+) Keeps fragments small – better memory utilization than the other two
 (-) Will typically run slower – requires an exhaustive search of the heap

Placement Example

 Source: Pearson

Buddy System
 Buddy system

 Use both fixed and dynamic partitioning
 Memory blocks are available of size 2K words, L ≤ K ≤ U, where

− 2L = smallest size block that is allocated
− 2U = largest size block that is allocated

 If a request of size s is made, the entire block that fits s is allocated.
 The buddy system maintains a list of holes (unallocated blocks)

− It may split a hole in half to create two buddies of half size
− It may coalesce two holes into a single block of double size

Buddy System Example

 Source: Pearson

Tree Representation

 Source: Pearson

Addresses
 Logical address

 Address starts from 0

 Relative address
 An example of logical address
 Address is expressed as a location relative to some known point

 Physical address
 The actual address in main memory

Hardware Support for Relocation

 Source: Pearson

Paging
 Paging

 Partition memory into equal fixed-size chunks (page frames)
 Process image is divided into the same fixed-size chunks (pages)

 Page table
 Contains the mapping between pages and frames

− For each page in the process, PTE (page table entry) contains the frame
number

 Maintained by operating system for each process
 CPU must access the page table to generate a physical address for the

current process

Assignment of Processes to Frames

 Source: Pearson

Page Tables

 Source: Pearson

Logical Address

 Source: Pearson

Logical to Physical Address Translation

 Source: Pearson

Segmentation
 Segmentation

 A program is divided into variable-length segments
 The address consists of segment number + offset
 No internal fragmentation
 But, external fragmentation

− Similar to dynamic partitioning

Logical to Physical Address Translation

 Source: Pearson

Homework 6
 Exercise 7.2
 Exercise 7.6
 Exercise 7.9
 Exercise 7.15

	Operating System��Chapter 7. Memory Management
	Memory Management
	Relocation, Protection & Sharing
	Addressing Requirement of a Process
	Process Image
	Logical/Physical Organization
	Memory Management
	Memory Management Techniques
	Equal-size vs Unequal-size Partition
	Memory Assignment with Fixed Partitioning
	Dynamic Partitioning
	Effect of Dynamic Partitioning
	Placement Algorithms
	Placement Example
	Buddy System
	Buddy System Example
	Tree Representation
	Addresses
	Hardware Support for Relocation
	Paging
	Assignment of Processes to Frames
	Page Tables
	Logical Address
	Logical to Physical Address Translation
	Segmentation
	Logical to Physical Address Translation
	Homework 6

