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Classification of Multiprocessors 
 Shared-memory multiprocessors 

 Also called tightly coupled multiprocessors 
 Processors share a common shared main memory 
 Most of multicores and servers 

 Hybrid multiprocessors 
 A master, general-purpose processor + special slave coprocessors such as 

DSP, graphic processors 

 Distributed-memory multiprocessors 
 Also called multicomputers 
 A collection of processors, each with its own private memory and IO channels 
 Some manycores and supercomputers 

 Clusters or distributed systems 
 A set of autonomous systems connected through networks/internets 

 
 



Synchronization Granularity 

 Source: Pearson 



Independent Parallelism 
 No explicit synchronization among processes 

 Each represents a separate, independent application or job 
 Typical use is in a time-sharing system 
 Each user is performing a particular application 

 Multiprocessor provides the same service as a 
multiprogrammed uniprocessor 
 Average response time will be reduced because more than one 

processor is available 



Coarse and Very Coarse Grained Parallelism 

 Synchronization among processes, but at a very gross 
level 

 Good for concurrent processes running on a 
multiprogrammed uniprocessor 
 Can be supported on a multiprocessor with little or no change to user 

software 
 



Medium-Grained Parallelism 
 Single application can be effectively implemented as a 

collection of threads within a single process 
 Programmer must explicitly specify the potential parallelism of an 

application 
 There needs to be a high degree of coordination and interaction 

among the threads of an application, leading to a medium-grain level 
of synchronization 

 Because the various threads of an application interact 
so frequently, scheduling decisions concerning one 
thread may affect the performance of the entire 
application 
 



Fine-Grained Parallelism 
 Represents a much more complex use of parallelism 

than is found in the use of threads 
 Is a specialized and fragmented area with many 

different approaches 
 



Design Issues 
 Scheduling on a multiprocessor involves three 

interrelated issues: 
 Assignment of processes to processors 
 The use of multiprogramming on individual processors 
 The actual selection of a process to run 

− The use of priorities or past usage may improve performance for 
uniprocessor but these complexities may be unnecessary or even 
counterproductive for multiprocessors 

 The approach taken will depend on the degree 
of granularity of applications and the number 
of processors available 
 



Assignment of Processes to Processors 

 Assuming all processors are equal, it is simplest to treat 
processors as a pooled resource and assign processes to 
processors on demand 

 Static assignment 
 A process is permanently assigned to one processor from activation until 

its completion with a dedicated queue for each processor 
− Advantage: less scheduling overhead  
− Disadvantage : one processor can be idle with an empty queue, while another 

processor has a backlog 
− To prevent this situation, a common queue can be used. In this case over the 

lifetime of a process, it may be executed on different processors at different 
times 

 Another option is dynamic load balancing 
 Threads are moved from a queue for one processor to a queue for 

another processor. Linux uses this approach. 

 



Master/Slave Architecture 
 Master processor 

 Run key kernel functions  
 Responsible for scheduling 
 Has control of all memory and IO resources 

 Slave processors 
 Run user programs 
 Send service request to the master for IO and system services 

 Advantage 
 Simple and requires little enhancement to a uniprocessor multiprogramming 

operating system 

 Disadvantage 
 Failure of master brings down the whole system 
 Master can become a performance bottleneck 

 



Peer Architecture 
 Kernel can execute on any processor 
 Each processor does self-scheduling from the pool of 

available processes 
 Complicate the operating system 

 Operating system must ensure that two processors do not choose the 
same process and need to resolve and synchronize competing claims 
to resources 
 



The Use of Multiprogramming on Individual 
Processors 

 When each process is statically assigned to a 
processor for the duration of lifetime, should that 
processor multiprogrammed? 
 In the traditional multiprocessor with coarse-grained or independent 

synchronization granularity, it is clear that each individual processor should 
be able to switch among a number of processes to achieve high utilization. 

 However, for medium-grained applications running on a multiprocessor with 
many processors, the situation is not clear. 
− With many processors available, it is no longer paramount that every single 

processor be busy as much as possible 
− Rather, we are concerned to provide the best performance for the applications.  
− An application that consists of many threads may run poorly unless all of its 

threads are available to run simultaneously. 



Process Scheduling 
 Usually processes are not dedicated to processors 
 A single queue is used for all processors 

 If some sort of priority scheme is used, there are multiple queues 
based on priority 

 We can view the system as a multi-server queuing architecture 

 
 



Comparison of Single and Dual Processors 

 Cs measures the coefficient 
of variation. 
 Cs is calculated as σ/Ts where σ is 

the standard deviation of the 
service time and Ts is the mean 
service time 

 Cs = 0 corresponds to the case 
where the service times of all 
processes are equal. 

 The larger the Cs, the more 
variation in the service time 

 Values of Cs of 5 or more are not 
unusual 

 The specific scheduling discipline is much less important 
with dual processors than with one. 

 Source: Pearson 
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Thread Scheduling 
 On a uniprocessor 

 Threads can be used as a program structuring aid and to overlap I/O with 
processing 

 In a multiprocessor system  
 Threads can be used to exploit true parallelism in an application 
 Dramatic performance gains are possible in multiprocessor systems 
 For applications that require significant interaction among threads, small 

differences in thread management and scheduling can have a significant 
performance impact 

 



Approaches to Thread Scheduling 
 Load sharing 

 Processes are not assigned to a particular processor 
 A global queue of ready threads is maintained. Each processor, when idle, 

selects a thread from the queue 

 Gang scheduling 
 A set of related threads is scheduled to run on a set of processors at the 

same time 

 Dedicated processor assignment 
 The opposite of the load sharing approach 
 Dedicate a group of processors to an application for the duration of the 

application. 
− When an application is scheduled, each of its threads is assigned a processor that 

remains dedicated to that thread until completion 

 Dynamic scheduling 
 The number of threads in a process can be altered during the course of 

execution 
 



Load Sharing 
 Simplest approach and carries over most directly from a 

uniprocessor environment 
 Advantages 

 Load is distributed evenly across the processors 
 No centralized scheduler is required. When a processor is available, the 

scheduler can run on that processor to select the next thread 
 The global queue can be organized and accessed using any of the 

scheduling algorithms discussed in Chapter 9 
 Versions of load sharing 

 First-come-first-served 
− When a job arrives, its threads are placed at the end of the shared queue. An idle 

processor selects the next ready thread, which it executes until completion or 
blocking. 

 Smallest number of threads first 
− The shared ready queue is organized as a priority queue with highest priority 

given to threads from jobs with smallest number of threads. 
 Preemptive smallest number of threads first 

 
 



Load Sharing 
 Disadvantages 

 Central queue occupies a region of memory that must be accessed in 
a manner that enforces mutual exclusion 
− Can lead to bottlenecks 

 Preemptive threads are unlikely to resume execution on the same 
processor 
− Caching can become less efficient 

 If all threads are treated as a common pool of threads, it is unlikely 
that all of the threads of a program will gain access to processors at 
the same time 
− May seriously compromise performance 

 Despite its disadvantages, it is one of the most 
commonly used schemes 

 



Gang Scheduling 
 Simultaneous scheduling of the threads that make up a 

single process on a set of processors 
 Advantages 

 If closely related threads execute in parallel, synchronization blocking 
may be reduced, less thread switching, and performance will increase 

 Scheduling overhead may be reduced because a single decision 
affects a number of processors and threads at one time 

 Useful for medium-grained to fine-grained parallel 
applications whose performance severely degrades 
when any part of the application is not running while 
other parts are ready to run 

 Also beneficial for any parallel application 
 



Example of Scheduling Groups with 4 and 1 
Threads 

 Source: Pearson 



Dedicated Processor Assignment 
 When an application is scheduled, each of its threads 

is assigned to a processor that remains dedicated to 
that thread until the application runs to completion 

 If a thread of an application is blocked waiting for I/O 
or for synchronization with another thread, then that 
thread’s processor remains idle 
 There is no multiprogramming of processors 

 Defense of this strategy: 
 In a highly parallel system, with tens or hundreds of processors, 

processor utilization is no longer so important as a metric for 
effectiveness or performance 

 The total avoidance of process switching during the lifetime of a 
program should result in a substantial speedup of that program 

 



Application Speedup as a Function of 
Number of Threads 

 The performance worsens considerably when the number of threads in 
each application exceeds 8 and thus the total number of threads exceeds 
the number of processors. 

 Source: Pearson 



Dynamic Scheduling 
 For some applications it is possible to provide language and 

system tools that permit the number of threads in the process to 
be altered dynamically 
 This would allow the operating system to adjust the load to improve utilization 

 Both the operating system and the application are involved in 
making scheduling decisions 
 When a job requests one or more processors, 

− If there are idle processors, assign them to satisfy the request 
− Otherwise, if the job is a new arrival, allocate it a single processor by taking one 

away from any job currently allocated more than one processor 
− If any of the request cannot be satisfied, it remains outstanding until either a 

processor become available 
− Upon release of one or more processors, scan the current queue of unsatisfied 

requests an assign a single processor to each job in the list  
 This approach is superior to gang scheduling or dedicated 

processor assignment for applications that can take advantage of 
it, but the overhead may negate the performance advantage. 

 



Real-Time Systems 
 Examples of real-time systems 

 Control of laboratory experiments 
 Process control in industrial plants 
 Robotics 
 Air traffic control 
 Telecommunications 
 Military command and control systems 

 Correctness of the system depends not only on the 
logical result of the computation but also on the time at 
which the results are produced 
 Real-time tasks attempt to control or react to events that take place in the 

outside world 
 Because these events occur in “real time” and tasks must be able to keep up 

with the events in time 

 
 



Hard and Soft Real Time Tasks 
 A hard real time task 

 Must meet its deadline 
 Otherwise, it will cause unacceptable damage or a fatal error to the 

system 

 A soft real time task 
 Has an associated deadline that is desirable but not mandatory 
 It still makes sense to schedule and complete the task even if it has 

passed its deadline 
 



Periodic and Aperiodic Tasks 
 An aperiodic task 

 Has a deadline by which it must finish or start 
 May have a constraint on both start and finish time 

 A periodic task 
 Has a requirement that may be stated as: 

− Once per period T, or 
− Exactly T units apart 

 



Characteristics of Real Time Systems 

 Real-time operating systems have requirements in five 
general areas 
 Determinism 
 Responsiveness 
 User control 
 Reliability 
 Fail-soft operation 



Determinism 
 When multiple processes are competing for resources and 

processor time, no system will be fully deterministic 
 One useful measure of the ability of OS to function 

deterministically is the maximum delay from the arrival of a 
high-priority interrupt to when the service begins 

 The extent to which an operating system can deterministically 
satisfy requests depends on: 
 The speed with which it can respond to interrupts 

− In non-real-time OS, this delay may be in the range of tens to hundreds 
of milliseconds 

− In real-time OS, this delay may have an upper bound from a few 
microseconds to a millisecond 

 Whether the system has sufficient capacity to handle all requests within the 
required time 
 



Responsiveness 
 Determinism is concerned with how long an OS delays before 

acknowledging an interrupt while responsiveness is concerned 
with how long it takes an OS to service the interrupt after the 
acknowledgment 
 The amount of time required to initially handle the interrupt and begin 

execution of the ISR. This includes context switching. 
 The amount of time required to perform ISR 
 The effect of interrupt nesting. If an ISR can be interrupted by another 

interrupt, the service will be delayed. 
 Determinism and responsiveness make up the response time to 

external events 
 Critical for real-time systems that must meet timing requirements 

imposed by individuals, devices, and data flows external to the 
system 

 
 



User Control 
 In a typical non-real-time OS, the user has no control 

over the scheduling, or only provide broad guidance 
such as grouping users into more than one priority 
class. 

 In a real-time OS, it is essential to allow the user fine-
grained control over task priority. 
 The user distinguish between hard and soft real-time tasks. 
 The user specify relative priorities within each priority class. 

 May allow user to specify such characteristics as 
 Paging or process swapping 
 What processes must always be resident in main memory 
 What disk transfer algorithms are to be used 
 What rights the processes in each priority class have 

 



Reliability 
 More important for real-time systems than non-real 

time systems 
 In a non-real-time system, a failure may result in a reduced level of service. 

And, it can be often solved by rebooting the system. 

 However, in real-time systems, loss or degradation of 
performance may have catastrophic consequences 
such as: 
 Financial loss 
 Major equipment damage 
 Loss of life 

 



Fail-Soft Operation 
 A characteristic that refers to the ability of a system to 

fail in such a way as to preserve as much capability 
and data as possible 

 Important aspect is stability 
 A real-time system is stable if the system will meet the deadlines of its 

most critical, highest-priority tasks even if some less critical task 
deadlines are not always met 

 



Real-Time OS Charatertistics 
 To meet the requirements, real-time OS has the 

following features in general 
 Fast process/thread switching 
 Small size 
 Ability to respond to external events quickly 
 Preemptive scheduling based on priority 
 Minimize intervals during which interrupts are disabled 
 Short-term scheduler optimized for real-time tasks 

− Fairness and minimizing average response time is not important 
− What is important is that all hard real-time tasks must complete (or start) by their 

deadline an soft real-time tasks must also complete by their deadline as much as 
possible 



Real Time Scheduling of Processes 

(d) Immediate preemptive scheduler! 

 Source: Pearson 



Real-Time Scheduling 
 Real-time scheduling is one of the most active areas of 

research in computer science 
 Scheduling approaches depend on 

 Whether a system performs schedulability analysis 
− If it does, whether it is done statically or dynamically 

 Whether the result of the analysis itself produces a schedule 
according to which tasks are dispatched at run time 
 



Classes of Real-Time Scheduling Algorithms 

 Static table-driven approaches 
 Perform a static analysis of feasible schedules of dispatching 
 Result is a schedule that determines when a task must begin execution 
 Applicable to periodic tasks whose arrival time, execution time, deadlines are predictable 

 Static priority-driven preemptive approaches 
 A static analysis is performed but no schedule is drawn up 
 Analysis is used to assign priorities to tasks so that a traditional priority-driven 

preemptive scheduler can be used 
 Common in most non-real-time systems 

 Dynamic planning-based approaches 
 Feasibility is determined at run time rather than offline prior to the start of execution 
 One result of the analysis is a schedule that is used to decide when to dispatch this task 

 Dynamic best effort approaches 
 No feasibility analysis is performed 
 System tries to meet all deadlines and aborts any started process whose deadline is 

missed 
 Used by many commercial real-time systems 

 



Deadline Scheduling 
 Real-time operating systems are designed with the objective of 

starting real-time tasks as rapidly as possible and emphasize 
rapid interrupt handling and task dispatching 

 Real-time applications are generally not concerned with sheer 
speed but rather with completing (or starting) tasks at the most 
valuable times 

 Priorities provide a crude tool and do not capture the requirement 
of completion (or initiation) at the most valuable time 

 



Information Used for Deadline Scheduling 

 Ready time 
 Time at which task becomes ready for execution 

 Starting deadline 
 Time by which task must begin 

 Completion deadline 
 Time by which task must be completed 

 Processing time 
 Time required to execute the task to completion 

 Resource requirements 
 Resources required by the task while it is executing 

 Priority 
 Measures the relative importance of the task 

 Subtask structure 
 A task may be decomposed into a mandatory subtask and an optional 

subtask. Only the mandatory subtask possesses a hard deadline 
 



Execution Profile of Two Tasks 

 Source: Pearson 



Scheduling of Periodic Tasks with 
Completion Deadlines 

 Source: Pearson 



Execution Profile of 5 Aperiodic Tasks 

 Source: Pearson 



Scheduling of Aperiodic Tasks with Starting 
Deadlines 

nonpreeptive 

If deadlines can be known in advance 

 Source: Pearson 



Rate Monotonic Scheduling 
 RMS 

 Popular 
scheduling 
algorithm for 
periodic tasks 

 The highest 
priority is given 
to a process with 
the shortest 
period 

 The 2nd highest 
priority is given 
to a process with 
the second 
shortest period 

 The priority is a 
monotonically 
increasing 
function of their 
rate 

 Source: Pearson 



Periodic Task Timing Diagram 

For example, a task with a period of 50ms occurs at a rate of 20Hz! 

 Source: Pearson 



RMS Analysis 



Value of the RMS Upper Bound 

 Source: Pearson 



Priority Inversion 
 Can occur in any priority-based preemptive scheduling scheme 

 Best-known instance was the Mars Pathfinder mission. The robot gathered 
and transmitted voluminous data back to Earth. But a few days into the 
mission, the software began experiencing system resets, each resulting in 
losses of data. The problem was traced to priority inversion. 

 Priority inversion occurs when circumstances within the system 
force a higher priority task to wait for a lower priority task 
 A simple example occurs if a lower-priority task has locked a resource and a 

higher priority task attempts to lock the same resource. The higher priority 
task will block until the resource is available. 

 A more serious condition is referred as an unbounded priority 
inversion 
 The duration of a priority inversion depends not only on the time required to 

handle a shared resource, but also on the unpredictable actions of other 
unrelated tasks. The pathfinder software was a good example. 
 



Pathfinder Example 
 Pathfinder software included the following 3 tasks in 

decreasing order of priority 
 T1: periodically check the health of the spacecraft system and software 
 T2: process image data 
 T3: perform an occasional test on equipment status 

 After T1 executes, it reinitializes a timer to a maximum 
 If this timer ever expires,  

 It is assumed that the system integrity has been compromised 
 The CPU is halted, all devices are reset, and the software is reloaded, and the 

spacecraft system starts over. 
 This recovery sequence does not complete until the next day. 

 T1 and T3 share a common data structure  protected by 
a binary semaphore 
 



Unbounded Priority Inversion 
t1: T3 begin executing. 
t2: T3 locks semaphore s 
t3: T1 (higher priority)                          
preempt T3 and begin 
executing. 
t4: T1 is blocked since 
the semaphore  s is 
locked by T3. T3 resume 
execution. 
t5: T2 preempt T3 
t6: T2 is suspended for 
some reason and T3 
resumes 
t7: T3 unlocks s and T1 
preempts T3 
 
=> T1 must wait for both 
T2 and T3 to complete 
and fails to reset the 
timer before it expires! 

 Source: Pearson 



Priority Inheritance 
 A lower priority task 

inherits the priority 
of any higher priority 
task pending on a 
resource they share 

 This priority change 
takes place as soon 
as the higher priority 
task blocks on the 
resource and it 
should end when the 
resource is released 
by the lower priority 
task. 

 Source: Pearson 



Homework 9 
 Exercise 10.1 
 Exercise 10.2 
 Exercise 10.6 
 Exercise 10.9 
 Exercise 10.15 
 Exercise 10.16 
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