
Operating System

Chapter 9. Multiprocessor and
 Real Time Scheduling

Lynn Choi
School of Electrical Engineering

Classification of Multiprocessors
 Shared-memory multiprocessors

 Also called tightly coupled multiprocessors
 Processors share a common shared main memory
 Most of multicores and servers

 Hybrid multiprocessors
 A master, general-purpose processor + special slave coprocessors such as

DSP, graphic processors

 Distributed-memory multiprocessors
 Also called multicomputers
 A collection of processors, each with its own private memory and IO channels
 Some manycores and supercomputers

 Clusters or distributed systems
 A set of autonomous systems connected through networks/internets

Synchronization Granularity

 Source: Pearson

Independent Parallelism
 No explicit synchronization among processes

 Each represents a separate, independent application or job
 Typical use is in a time-sharing system
 Each user is performing a particular application

 Multiprocessor provides the same service as a
multiprogrammed uniprocessor
 Average response time will be reduced because more than one

processor is available

Coarse and Very Coarse Grained Parallelism

 Synchronization among processes, but at a very gross
level

 Good for concurrent processes running on a
multiprogrammed uniprocessor
 Can be supported on a multiprocessor with little or no change to user

software

Medium-Grained Parallelism
 Single application can be effectively implemented as a

collection of threads within a single process
 Programmer must explicitly specify the potential parallelism of an

application
 There needs to be a high degree of coordination and interaction

among the threads of an application, leading to a medium-grain level
of synchronization

 Because the various threads of an application interact
so frequently, scheduling decisions concerning one
thread may affect the performance of the entire
application

Fine-Grained Parallelism
 Represents a much more complex use of parallelism

than is found in the use of threads
 Is a specialized and fragmented area with many

different approaches

Design Issues
 Scheduling on a multiprocessor involves three

interrelated issues:
 Assignment of processes to processors
 The use of multiprogramming on individual processors
 The actual selection of a process to run

− The use of priorities or past usage may improve performance for
uniprocessor but these complexities may be unnecessary or even
counterproductive for multiprocessors

 The approach taken will depend on the degree
of granularity of applications and the number
of processors available

Assignment of Processes to Processors

 Assuming all processors are equal, it is simplest to treat
processors as a pooled resource and assign processes to
processors on demand

 Static assignment
 A process is permanently assigned to one processor from activation until

its completion with a dedicated queue for each processor
− Advantage: less scheduling overhead
− Disadvantage : one processor can be idle with an empty queue, while another

processor has a backlog
− To prevent this situation, a common queue can be used. In this case over the

lifetime of a process, it may be executed on different processors at different
times

 Another option is dynamic load balancing
 Threads are moved from a queue for one processor to a queue for

another processor. Linux uses this approach.

Master/Slave Architecture
 Master processor

 Run key kernel functions
 Responsible for scheduling
 Has control of all memory and IO resources

 Slave processors
 Run user programs
 Send service request to the master for IO and system services

 Advantage
 Simple and requires little enhancement to a uniprocessor multiprogramming

operating system

 Disadvantage
 Failure of master brings down the whole system
 Master can become a performance bottleneck

Peer Architecture
 Kernel can execute on any processor
 Each processor does self-scheduling from the pool of

available processes
 Complicate the operating system

 Operating system must ensure that two processors do not choose the
same process and need to resolve and synchronize competing claims
to resources

The Use of Multiprogramming on Individual
Processors

 When each process is statically assigned to a
processor for the duration of lifetime, should that
processor multiprogrammed?
 In the traditional multiprocessor with coarse-grained or independent

synchronization granularity, it is clear that each individual processor should
be able to switch among a number of processes to achieve high utilization.

 However, for medium-grained applications running on a multiprocessor with
many processors, the situation is not clear.
− With many processors available, it is no longer paramount that every single

processor be busy as much as possible
− Rather, we are concerned to provide the best performance for the applications.
− An application that consists of many threads may run poorly unless all of its

threads are available to run simultaneously.

Process Scheduling
 Usually processes are not dedicated to processors
 A single queue is used for all processors

 If some sort of priority scheme is used, there are multiple queues
based on priority

 We can view the system as a multi-server queuing architecture

Comparison of Single and Dual Processors

 Cs measures the coefficient
of variation.
 Cs is calculated as σ/Ts where σ is

the standard deviation of the
service time and Ts is the mean
service time

 Cs = 0 corresponds to the case
where the service times of all
processes are equal.

 The larger the Cs, the more
variation in the service time

 Values of Cs of 5 or more are not
unusual

 The specific scheduling discipline is much less important
with dual processors than with one.

 Source: Pearson

 Source: Pearson

Thread Scheduling
 On a uniprocessor

 Threads can be used as a program structuring aid and to overlap I/O with
processing

 In a multiprocessor system
 Threads can be used to exploit true parallelism in an application
 Dramatic performance gains are possible in multiprocessor systems
 For applications that require significant interaction among threads, small

differences in thread management and scheduling can have a significant
performance impact

Approaches to Thread Scheduling
 Load sharing

 Processes are not assigned to a particular processor
 A global queue of ready threads is maintained. Each processor, when idle,

selects a thread from the queue

 Gang scheduling
 A set of related threads is scheduled to run on a set of processors at the

same time

 Dedicated processor assignment
 The opposite of the load sharing approach
 Dedicate a group of processors to an application for the duration of the

application.
− When an application is scheduled, each of its threads is assigned a processor that

remains dedicated to that thread until completion

 Dynamic scheduling
 The number of threads in a process can be altered during the course of

execution

Load Sharing
 Simplest approach and carries over most directly from a

uniprocessor environment
 Advantages

 Load is distributed evenly across the processors
 No centralized scheduler is required. When a processor is available, the

scheduler can run on that processor to select the next thread
 The global queue can be organized and accessed using any of the

scheduling algorithms discussed in Chapter 9
 Versions of load sharing

 First-come-first-served
− When a job arrives, its threads are placed at the end of the shared queue. An idle

processor selects the next ready thread, which it executes until completion or
blocking.

 Smallest number of threads first
− The shared ready queue is organized as a priority queue with highest priority

given to threads from jobs with smallest number of threads.
 Preemptive smallest number of threads first

Load Sharing
 Disadvantages

 Central queue occupies a region of memory that must be accessed in
a manner that enforces mutual exclusion
− Can lead to bottlenecks

 Preemptive threads are unlikely to resume execution on the same
processor
− Caching can become less efficient

 If all threads are treated as a common pool of threads, it is unlikely
that all of the threads of a program will gain access to processors at
the same time
− May seriously compromise performance

 Despite its disadvantages, it is one of the most
commonly used schemes

Gang Scheduling
 Simultaneous scheduling of the threads that make up a

single process on a set of processors
 Advantages

 If closely related threads execute in parallel, synchronization blocking
may be reduced, less thread switching, and performance will increase

 Scheduling overhead may be reduced because a single decision
affects a number of processors and threads at one time

 Useful for medium-grained to fine-grained parallel
applications whose performance severely degrades
when any part of the application is not running while
other parts are ready to run

 Also beneficial for any parallel application

Example of Scheduling Groups with 4 and 1
Threads

 Source: Pearson

Dedicated Processor Assignment
 When an application is scheduled, each of its threads

is assigned to a processor that remains dedicated to
that thread until the application runs to completion

 If a thread of an application is blocked waiting for I/O
or for synchronization with another thread, then that
thread’s processor remains idle
 There is no multiprogramming of processors

 Defense of this strategy:
 In a highly parallel system, with tens or hundreds of processors,

processor utilization is no longer so important as a metric for
effectiveness or performance

 The total avoidance of process switching during the lifetime of a
program should result in a substantial speedup of that program

Application Speedup as a Function of
Number of Threads

 The performance worsens considerably when the number of threads in
each application exceeds 8 and thus the total number of threads exceeds
the number of processors.

 Source: Pearson

Dynamic Scheduling
 For some applications it is possible to provide language and

system tools that permit the number of threads in the process to
be altered dynamically
 This would allow the operating system to adjust the load to improve utilization

 Both the operating system and the application are involved in
making scheduling decisions
 When a job requests one or more processors,

− If there are idle processors, assign them to satisfy the request
− Otherwise, if the job is a new arrival, allocate it a single processor by taking one

away from any job currently allocated more than one processor
− If any of the request cannot be satisfied, it remains outstanding until either a

processor become available
− Upon release of one or more processors, scan the current queue of unsatisfied

requests an assign a single processor to each job in the list
 This approach is superior to gang scheduling or dedicated

processor assignment for applications that can take advantage of
it, but the overhead may negate the performance advantage.

Real-Time Systems
 Examples of real-time systems

 Control of laboratory experiments
 Process control in industrial plants
 Robotics
 Air traffic control
 Telecommunications
 Military command and control systems

 Correctness of the system depends not only on the
logical result of the computation but also on the time at
which the results are produced
 Real-time tasks attempt to control or react to events that take place in the

outside world
 Because these events occur in “real time” and tasks must be able to keep up

with the events in time

Hard and Soft Real Time Tasks
 A hard real time task

 Must meet its deadline
 Otherwise, it will cause unacceptable damage or a fatal error to the

system

 A soft real time task
 Has an associated deadline that is desirable but not mandatory
 It still makes sense to schedule and complete the task even if it has

passed its deadline

Periodic and Aperiodic Tasks
 An aperiodic task

 Has a deadline by which it must finish or start
 May have a constraint on both start and finish time

 A periodic task
 Has a requirement that may be stated as:

− Once per period T, or
− Exactly T units apart

Characteristics of Real Time Systems

 Real-time operating systems have requirements in five
general areas
 Determinism
 Responsiveness
 User control
 Reliability
 Fail-soft operation

Determinism
 When multiple processes are competing for resources and

processor time, no system will be fully deterministic
 One useful measure of the ability of OS to function

deterministically is the maximum delay from the arrival of a
high-priority interrupt to when the service begins

 The extent to which an operating system can deterministically
satisfy requests depends on:
 The speed with which it can respond to interrupts

− In non-real-time OS, this delay may be in the range of tens to hundreds
of milliseconds

− In real-time OS, this delay may have an upper bound from a few
microseconds to a millisecond

 Whether the system has sufficient capacity to handle all requests within the
required time

Responsiveness
 Determinism is concerned with how long an OS delays before

acknowledging an interrupt while responsiveness is concerned
with how long it takes an OS to service the interrupt after the
acknowledgment
 The amount of time required to initially handle the interrupt and begin

execution of the ISR. This includes context switching.
 The amount of time required to perform ISR
 The effect of interrupt nesting. If an ISR can be interrupted by another

interrupt, the service will be delayed.
 Determinism and responsiveness make up the response time to

external events
 Critical for real-time systems that must meet timing requirements

imposed by individuals, devices, and data flows external to the
system

User Control
 In a typical non-real-time OS, the user has no control

over the scheduling, or only provide broad guidance
such as grouping users into more than one priority
class.

 In a real-time OS, it is essential to allow the user fine-
grained control over task priority.
 The user distinguish between hard and soft real-time tasks.
 The user specify relative priorities within each priority class.

 May allow user to specify such characteristics as
 Paging or process swapping
 What processes must always be resident in main memory
 What disk transfer algorithms are to be used
 What rights the processes in each priority class have

Reliability
 More important for real-time systems than non-real

time systems
 In a non-real-time system, a failure may result in a reduced level of service.

And, it can be often solved by rebooting the system.

 However, in real-time systems, loss or degradation of
performance may have catastrophic consequences
such as:
 Financial loss
 Major equipment damage
 Loss of life

Fail-Soft Operation
 A characteristic that refers to the ability of a system to

fail in such a way as to preserve as much capability
and data as possible

 Important aspect is stability
 A real-time system is stable if the system will meet the deadlines of its

most critical, highest-priority tasks even if some less critical task
deadlines are not always met

Real-Time OS Charatertistics
 To meet the requirements, real-time OS has the

following features in general
 Fast process/thread switching
 Small size
 Ability to respond to external events quickly
 Preemptive scheduling based on priority
 Minimize intervals during which interrupts are disabled
 Short-term scheduler optimized for real-time tasks

− Fairness and minimizing average response time is not important
− What is important is that all hard real-time tasks must complete (or start) by their

deadline an soft real-time tasks must also complete by their deadline as much as
possible

Real Time Scheduling of Processes

(d) Immediate preemptive scheduler!

 Source: Pearson

Real-Time Scheduling
 Real-time scheduling is one of the most active areas of

research in computer science
 Scheduling approaches depend on

 Whether a system performs schedulability analysis
− If it does, whether it is done statically or dynamically

 Whether the result of the analysis itself produces a schedule
according to which tasks are dispatched at run time

Classes of Real-Time Scheduling Algorithms

 Static table-driven approaches
 Perform a static analysis of feasible schedules of dispatching
 Result is a schedule that determines when a task must begin execution
 Applicable to periodic tasks whose arrival time, execution time, deadlines are predictable

 Static priority-driven preemptive approaches
 A static analysis is performed but no schedule is drawn up
 Analysis is used to assign priorities to tasks so that a traditional priority-driven

preemptive scheduler can be used
 Common in most non-real-time systems

 Dynamic planning-based approaches
 Feasibility is determined at run time rather than offline prior to the start of execution
 One result of the analysis is a schedule that is used to decide when to dispatch this task

 Dynamic best effort approaches
 No feasibility analysis is performed
 System tries to meet all deadlines and aborts any started process whose deadline is

missed
 Used by many commercial real-time systems

Deadline Scheduling
 Real-time operating systems are designed with the objective of

starting real-time tasks as rapidly as possible and emphasize
rapid interrupt handling and task dispatching

 Real-time applications are generally not concerned with sheer
speed but rather with completing (or starting) tasks at the most
valuable times

 Priorities provide a crude tool and do not capture the requirement
of completion (or initiation) at the most valuable time

Information Used for Deadline Scheduling

 Ready time
 Time at which task becomes ready for execution

 Starting deadline
 Time by which task must begin

 Completion deadline
 Time by which task must be completed

 Processing time
 Time required to execute the task to completion

 Resource requirements
 Resources required by the task while it is executing

 Priority
 Measures the relative importance of the task

 Subtask structure
 A task may be decomposed into a mandatory subtask and an optional

subtask. Only the mandatory subtask possesses a hard deadline

Execution Profile of Two Tasks

 Source: Pearson

Scheduling of Periodic Tasks with
Completion Deadlines

 Source: Pearson

Execution Profile of 5 Aperiodic Tasks

 Source: Pearson

Scheduling of Aperiodic Tasks with Starting
Deadlines

nonpreeptive

If deadlines can be known in advance

 Source: Pearson

Rate Monotonic Scheduling
 RMS

 Popular
scheduling
algorithm for
periodic tasks

 The highest
priority is given
to a process with
the shortest
period

 The 2nd highest
priority is given
to a process with
the second
shortest period

 The priority is a
monotonically
increasing
function of their
rate

 Source: Pearson

Periodic Task Timing Diagram

For example, a task with a period of 50ms occurs at a rate of 20Hz!

 Source: Pearson

RMS Analysis

Value of the RMS Upper Bound

 Source: Pearson

Priority Inversion
 Can occur in any priority-based preemptive scheduling scheme

 Best-known instance was the Mars Pathfinder mission. The robot gathered
and transmitted voluminous data back to Earth. But a few days into the
mission, the software began experiencing system resets, each resulting in
losses of data. The problem was traced to priority inversion.

 Priority inversion occurs when circumstances within the system
force a higher priority task to wait for a lower priority task
 A simple example occurs if a lower-priority task has locked a resource and a

higher priority task attempts to lock the same resource. The higher priority
task will block until the resource is available.

 A more serious condition is referred as an unbounded priority
inversion
 The duration of a priority inversion depends not only on the time required to

handle a shared resource, but also on the unpredictable actions of other
unrelated tasks. The pathfinder software was a good example.

Pathfinder Example
 Pathfinder software included the following 3 tasks in

decreasing order of priority
 T1: periodically check the health of the spacecraft system and software
 T2: process image data
 T3: perform an occasional test on equipment status

 After T1 executes, it reinitializes a timer to a maximum
 If this timer ever expires,

 It is assumed that the system integrity has been compromised
 The CPU is halted, all devices are reset, and the software is reloaded, and the

spacecraft system starts over.
 This recovery sequence does not complete until the next day.

 T1 and T3 share a common data structure protected by
a binary semaphore

Unbounded Priority Inversion
t1: T3 begin executing.
t2: T3 locks semaphore s
t3: T1 (higher priority)
preempt T3 and begin
executing.
t4: T1 is blocked since
the semaphore s is
locked by T3. T3 resume
execution.
t5: T2 preempt T3
t6: T2 is suspended for
some reason and T3
resumes
t7: T3 unlocks s and T1
preempts T3

=> T1 must wait for both
T2 and T3 to complete
and fails to reset the
timer before it expires!

 Source: Pearson

Priority Inheritance
 A lower priority task

inherits the priority
of any higher priority
task pending on a
resource they share

 This priority change
takes place as soon
as the higher priority
task blocks on the
resource and it
should end when the
resource is released
by the lower priority
task.

 Source: Pearson

Homework 9
 Exercise 10.1
 Exercise 10.2
 Exercise 10.6
 Exercise 10.9
 Exercise 10.15
 Exercise 10.16

	Operating System��Chapter 9. Multiprocessor and � Real Time Scheduling
	Classification of Multiprocessors
	Synchronization Granularity
	Independent Parallelism
	Coarse and Very Coarse Grained Parallelism
	Medium-Grained Parallelism
	Fine-Grained Parallelism
	Design Issues
	Assignment of Processes to Processors
	Master/Slave Architecture
	Peer Architecture
	The Use of Multiprogramming on Individual Processors
	Process Scheduling
	Comparison of Single and Dual Processors
	Thread Scheduling
	Approaches to Thread Scheduling
	Load Sharing
	Load Sharing
	Gang Scheduling
	Example of Scheduling Groups with 4 and 1 Threads
	Dedicated Processor Assignment
	Application Speedup as a Function of Number of Threads
	Dynamic Scheduling
	Real-Time Systems
	Hard and Soft Real Time Tasks
	Periodic and Aperiodic Tasks
	Characteristics of Real Time Systems
	Determinism
	Responsiveness
	User Control
	Reliability
	Fail-Soft Operation
	Real-Time OS Charatertistics
	Real Time Scheduling of Processes
	Real-Time Scheduling
	Classes of Real-Time Scheduling Algorithms
	Deadline Scheduling
	Information Used for Deadline Scheduling
	Execution Profile of Two Tasks
	Scheduling of Periodic Tasks with Completion Deadlines
	Execution Profile of 5 Aperiodic Tasks
	Scheduling of Aperiodic Tasks with Starting Deadlines
	Rate Monotonic Scheduling
	Periodic Task Timing Diagram
	RMS Analysis
	Value of the RMS Upper Bound
	Priority Inversion
	Pathfinder Example
	Unbounded Priority Inversion
	Priority Inheritance
	Homework 9

