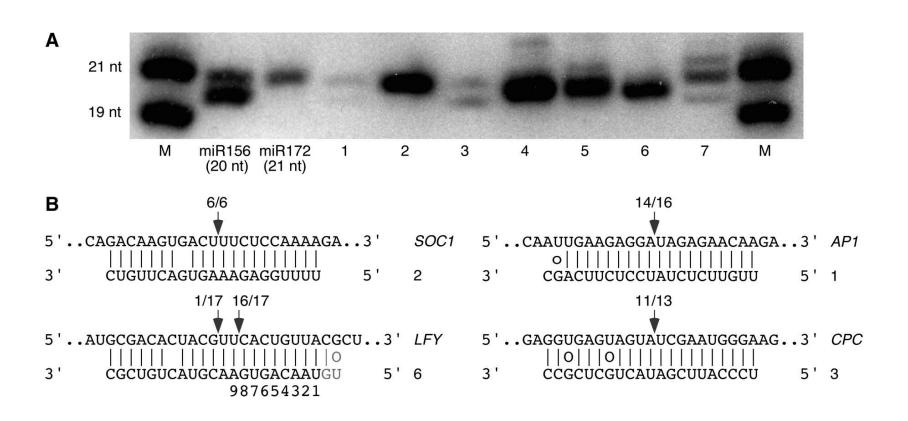
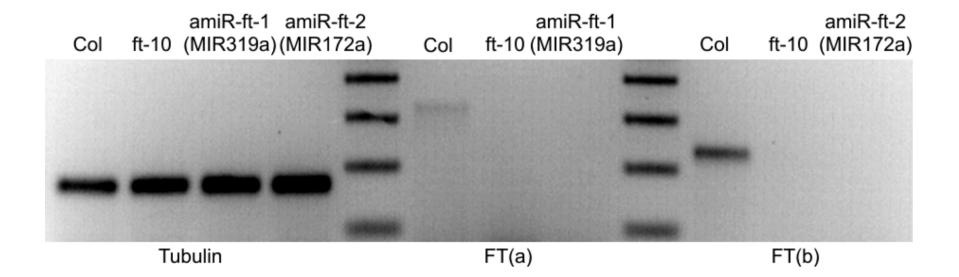
Artificial miRNA (amiR)

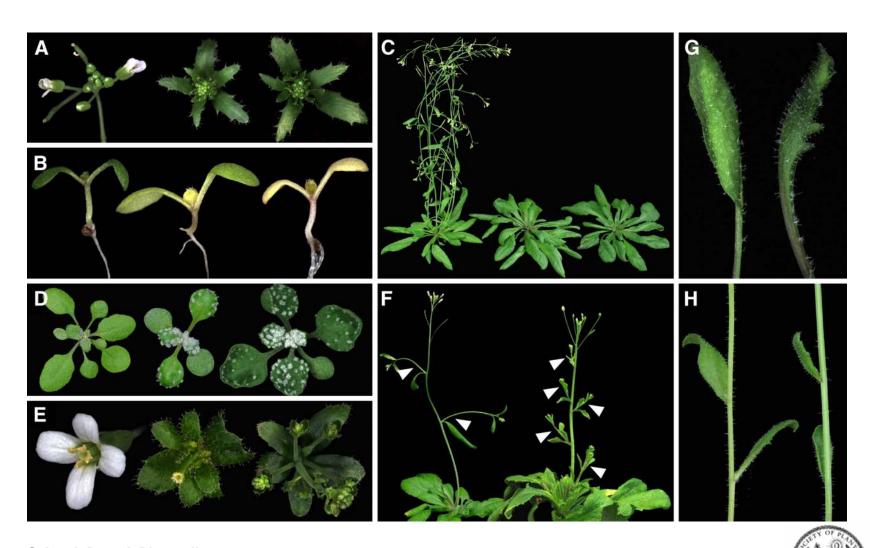
 Rebecca Schwab, Stephan Ossowski, Markus Riester, Norman Warthmann, and Detlef Weigel (2006) Highly Specific Gene Silencing by Artificial MicroRNAs in Arabidopsis. Plant Cell 18: 1121-1133

Table 1.	Predicted	amiRNA	Sequences	and	Targets

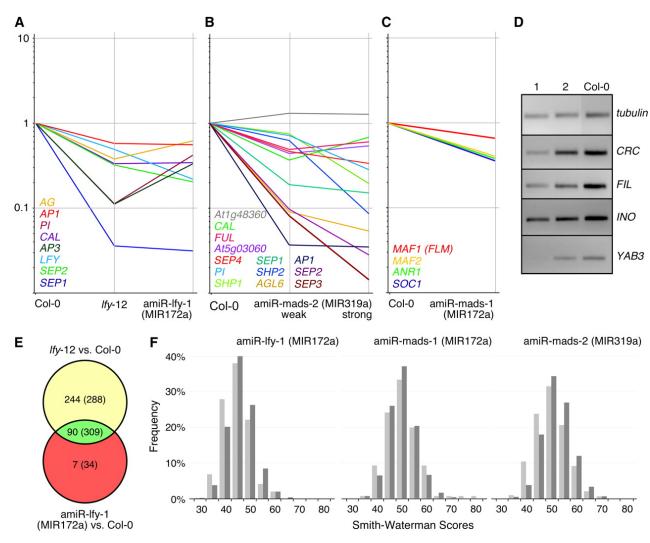

amiRNA	Predicted Mature Sequence (5'-3')	Predicted Target(s)	Known Target Functions	Reference
amiR-lfy-1	U AACAGUGA A CGUACUGUCGC	LFY	Master regulator of floral identity	1
amiR-Ify-2	U UACGAUAA A CGGUUGCUCGC			
amiR-white-1	U UAGUGAGA A UGUUGCGCCGG	GUN4	Cofactor in chlorophyll biosynthesis	2
amiR-white-2	U UUAACCAG A UUUUGCGUCGC			
amiR-ft-1	U AUUCUCGG A GGUGAGUGUUG	FT	Promotion of flowering	3
amiR-ft-2	U UGGUUAUA A AGGAAGAGGCC			
amiR-trichome	U CCCAUUCG A UACUGCUCGCC	TRY, CPC, ETC2	Trichome patterning	4, 5
amiR-mads-1	U UUUGGAGA A AGUGACUUGUC	SOC1, MAF1-3, ANR1, and three others	Regulation of flowering, nutrient uptake	
amiR-mads-2	U UGUUCUCU A UCCUCUUCAGC	SEP1-4, SHP1-2, AP1, CAL, and 10 others	Patterning of floral organs	6
amiR-yabby-1	U ACUGAAAG C UUCUCUGUGGG	INO, YAB3, and three others		_
amiR-yabby-2	U GUAUGCUG A UGGGACUCUCG	CRC	Regulation of adaxial polarity	7

Positions 1 and 10 of small RNAs are marked in bold. A complete list of targets together with alignments to the respective amiRNAs is shown in Supplemental Figure 1 online. References: 1, Weigel et al. (1992); 2, Larkin et al. (2003); 3, Kardailsky et al. (1999); 4, Schellmann et al. (2002); 5, Kirik et al. (2004); 6, Becker and Theissen (2003); 7, Engstrom et al. (2004).


Rebecca Schwab, Stephan Ossowski, Markus Riester, Norman Warthmann, and Detlef Weigel (2006) Highly Specific Gene Silencing by Artificial MicroRNAs in Arabidopsis. Plant Cell 18: 1121-1133

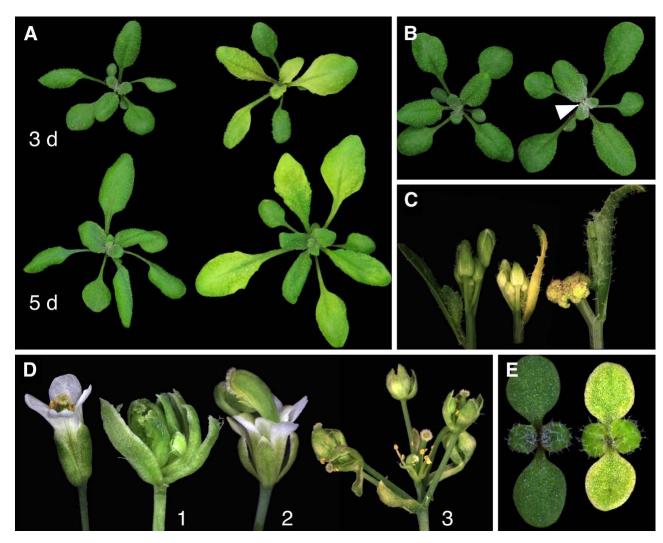


Rebecca Schwab, Stephan Ossowski, Markus Riester, Norman Warthmann, and Detlef Weigel (2006) Highly Specific Gene ©2006 by Ameristen ନିମ୍ନାନ୍ତ୍ରୀ ନିର୍ମ୍ଦି ନିର୍ମି ନିର୍ମ୍ଦି ନିର୍ମି ନିର୍ମ୍ଦି ନିର୍ମି ନିର୍ମ୍ଦି ନିର୍ମ୍ମ ନିର୍ମ୍ମ ନିର୍ମ୍ଦି ନିର୍ମ୍ମ ନିର୍ମ୍ମ ନିର୍ମ୍ମ ନିର୍ମ୍ମ ନିର୍ମ୍ମ ନିର୍ମ ନିର୍ମ୍ମ ନିର୍ମ୍ମ ନିର୍ମ୍ମ ନିର୍ମ୍ମ ନିର୍ମ୍ମ ନିର୍ମ ନିର୍ମ୍ମ ନିର୍ମ ନ



Schwab R et al. Plantcell 2006;18:1121-1133

Schwab R et al. Plantcell 2006;18:1121-1133



Schwab R et al. Plantcell 2006;18:1121-1133

Table 2. Summary of Downregulated Genes with Up to Five Mismatches

		amiR-lfy-1	amiR-mads-1	amiR-mads-2
Predicted targets, represented on array		1	6	18
Predicted targets, present in control		1	4	13
Predicted targets, present in control and downregulated in amiRNA overexpressers		1	1	6
All genes present in control without predicted targets		15,367	15,364	15,355
All genes downregulated without predicted targets		342	141	287
Genes with five mismatches	s, present in control	32	89 311	
Observed downregulated	Predicted targets	1	1	5
	Others	1	3	5
Expected downregulated without predicted targets		0.7	0.8	5.6
χ^2		0.1	6.4	0.5

Significantly downregulated genes were determined using LIMMA (Smyth et al., 2005), with an expression change of at least 1.5-fold at an estimated 1% false discovery rate (FDR) (Benjamini and Yekutieli, 2001). A χ^2 test was used to determine statistical significance of the difference between expected and observed downregulated genes among the nontargets (genes with five or less mismatches, but not predicted targets). A minimal χ^2 value of 6.63 corresponds to significant differences at $\alpha=0.01$. Use of the logit-T algorithm produced qualitatively similar results. A total of 15,368 genes were called present in Col-0 inflorescences. For amiR-lfy-1, we used the sequence of the 21-mer deduced from the mapping of the cleavage product, which was shifted by two nucleotides from the intended amiRNA.

Schwab R et al. Plantcell 2006;18:1121-1133