Copyright statement

- The images and the pictures in this lecture are provided by the CDs accompanied by the books
 - 1. University Physics, Bauer and Westfall, McGraw-Hill, 2011.
 - 2. Principles of Physics, Halliday, Resnick, and Walker, Wiley, 8th and 9th Ed.
- The rest is made by me.

Capacitors in parallel

Capacitors in series

Example 1

-q'

축전기의 전하를 0에서 q까지 만들 때 들어가는 일

축전기에 저장된 전기에너지와 전기에너지 밀도

$$U = \frac{q^2}{2C} = \frac{1}{2}CV^2 \qquad \qquad u = \frac{1}{2}\epsilon_0 E^2$$

보기문제 25-5

$$U = \frac{q^2}{8\pi\epsilon_0 R}$$

$$u = \frac{q^2}{32\pi^2\epsilon_0 R^4}$$

Electric energy of a charged sphere

$$U = \frac{q^2}{8\pi\epsilon_0 R}$$

Charged sphere as a capacitor

 $\frac{q^2}{8\pi\epsilon_0 R}$

U :

$$C = 4\pi\epsilon_0 R$$

Capacitor with dielectric material

$$C = \epsilon_0 \mathcal{L} \longrightarrow \kappa \epsilon_0 \mathcal{L} = \kappa C_{\text{air}}$$

Point charge in dielectric material $E = \frac{1}{4\pi\kappa\epsilon_0} \frac{q}{r^2}$

Electric field of an isolated charged surface inside dielectric material

$$E = \frac{\sigma}{\kappa \epsilon_0}$$

(b)

Dielectric material: atomic view

 $\vec{E}_0 = 0$

(a)

Polar dielectric material

Nonpolar dielectric material

 \vec{E}_0

(b)

 $\vec{E'}$

 \vec{E}_0

(c)

Effect of aligned dielectric on E

$$E < E_0 / E = \kappa \quad \text{with } \kappa > 1$$

여기서 κ를 유전상수 (dielectric constant)라고 한다.

Dielectric material and capacitors

Dielectric material and Gauss law

진공과 유전체에서의 전기현상의 차이

Coulomb force

$$\mathbf{f} (2 \leftarrow 1) = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2 (\mathbf{r}_2 - \mathbf{r}_1)}{|\mathbf{r}_2 - \mathbf{r}_1|^3}$$

$$\mathbf{f}_{C} = \frac{1}{4\pi\kappa\varepsilon_{0}} \frac{q_{1}q_{2}(\mathbf{r}_{2} - \mathbf{r}_{1})}{|\mathbf{r}_{2} - \mathbf{r}_{1}|^{3}}$$

Electric field

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{q\,\mathbf{r}}{r^3}$$

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\kappa\varepsilon_0} \frac{q\,\mathbf{r}}{r^3}$$

Gauss law

$$q \,/\, \varepsilon_0 = \oint \mathbf{E} \cdot d\mathbf{A}$$

$$q/\kappa\varepsilon_0 = \oint \mathbf{E} \cdot d\mathbf{A}$$

parallel plate capacitor

$$C = \varepsilon_0 \frac{A}{d}$$

$$C = \kappa \varepsilon_0 \frac{A}{d}$$

electric field energy density

$$u = \frac{1}{2}\varepsilon_0 E^2$$

$$u = \frac{1}{2} \kappa \varepsilon_0 E^2$$

Capacitor connection 1

 C_3

 C_1

(c)

 C_1

 C_3

