
Operating System

Chapter 11. I/O Management and
 Disk Scheduling

Lynn Choi
School of Electrical Engineering

Categories of I/O Devices

 I/O devices can be grouped into 3 categories
 Human readable devices

− Suitable for communicating with the computer user
− Printers, terminals, video display, keyboard, mouse

 Machine readable devices
− Suitable for communicating with electronic equipment
− Disk drives, USB devices, sensors, controllers

 Communication devices
− Suitable for communicating with remote devices
− Modems, digital line drivers

Data Rates

 Source: Pearson

Organization of I/O Function
 Three techniques for performing I/O are
 Programmed I/O

 The processor issues an I/O command on behalf of a process to an I/O
module; that process then busy waits for the operation to be completed
before proceeding

 Interrupt-driven I/O
 The processor issues an I/O command on behalf of a process

− If non-blocking – processor continues to execute instructions from the process
that issued the I/O command

− If blocking – the next instruction the processor executes is from the OS, which
will put the current process in a blocked state and schedule another process

 Direct Memory Access (DMA)
 The processor sends a request for a block transfer to the DMA module, which

then controls the exchange of data between main memory and an I/O
module. After the transfer, the DMA module interrupts the processor.

Techniques for Performing I/O

 Source: Pearson

Evolution of I/O Function
 Processor directly controls a peripheral device
 Programmed I/O without interrupt

 An I/O controller or I/O module is added

 Programmed I/O with interrupt
 Same configuration as step 2, but now interrupts are employed

 DMA
 The I/O module is given direct control of memory via DMA

 I/O channel
 The I/O module is enhanced to become a separate processor, with a

specialized instruction set tailored for I/O

 I/O processor
 The I/O module has a local memory of its own and is, in fact, a computer in

its own right

DMA Block Diagram
 Processor issues a

command to DMA
module with the following
information
 Read or Write
 The address of IO device
 The starting address of

memory
 The number of words to

transfer

 DMA module transfers
the entire block and after
completion, it interrupts
the processor

 Source: Pearson

DMA Alternative Configurations

 Source: Pearson

Design Objectives

 Efficiency
 Major effort in I/O design
 Important because I/O operations often form a bottleneck
 Most I/O devices are extremely slow compared with main memory

and the processor
 The area that has received the most attention is disk I/O

 Generality
 Desirable to handle all devices in a uniform manner
 The way processes view I/O devices and the way the operating

system manages I/O devices and operations
 Hide the details of device I/O so that user processes and upper levels

of OS see devices in terms of general functions such as read, write,
open, and close

 Diversity of devices makes it difficult to achieve true generality

Hierarchical Design
 Hierarchical nature of modern operating systems

 Operating system functions should be separated according to their
complexity, timescale, and their level of abstraction

 Leads to an OS organization into a series of layers
 Each layer performs a related subset of the functions and relies on the next

lower layer to perform more primitive functions and to conceal the details of
those functions. It provides services to the next higher layer.

 Layers should be defined so that changes in one layer do not require
changes in other layers

A Model of I/O Organization

open, close, read, write

I/O instructions, channel commands,
buffering techniques

interrupts, scheduling, and
queuing

Protocol layers such as TCP/IP

symbolic file names are
converted to identifiers
add, delete

open, close, read, write

logical reference to files
are converted to physical
addresses (track, sector)

 Source: Pearson

Buffering
 Perform data transfers in advance of requests

 For both inputs and outputs
 Can reduce time waiting for I/O to complete
 Also, avoid I/O interferences with OS swapping decisions

 Block-oriented device
 Stores information in blocks that are usually of fixed size
 Transfers are made one block at a time
 Possible to reference data by its block number
 Disks and USB devices are examples

 Stream-oriented device
 Transfers data as a stream of bytes
 No block structure
 Terminals, printers, keyboards, mouse, communications ports, and most

other devices that are not secondary storage are examples

I/O Buffering Schemes
 No buffering

 Without a buffer, the OS directly accesses
the device when it needs

 Single buffering
 OS assigns a buffer in the system portion

of main memory

 Double buffering
 Use two system buffers
 A process can transfer data to (or from)

one buffer while the operating system
empties (or fills) the other buffer

 Also known as buffer swapping

 Circular buffering
 When more than two buffers are used, the

collection of buffers is a circular buffer
 Each individual buffer is one unit in a

circular buffer

 Source: Pearson

Single Buffering
 For block-oriented devices

 Input transfers are made to the system buffer
 When the transfer is complete, the process moves the block into user

space and immediately requests another block
 Can speed up I/O since data are usually accessed sequentially

 For stream-oriented devices
 Line-at-a-time operation

− Used for dumb terminals or line printers
− User input is one line at a time with a carriage return
− Output to the terminal is similarly one line at a time

 Byte-at-a-time operation
− Used on forms-mode terminals, sensors and controllers
− When each keystroke is significant

Magnetic Disk
 A magnetic disk consists of a collection of platters,

each of which has two recordable surfaces.
 The stack of flatters rotate at 5400 RPM to 15000 RPM
 The diameter of this aluminum platter is from 3 ~ 12 cm

Platter

Track

Platters

Sectors

Tracks

 Read/write heads
 To read or write, the

read/write heads must
be moved so that they
are over the right track

 Disk heads for each
surface are connected
together and move in
conjunction

Magnetic Disk
 Cylinder: a set of tracks at a given radial position

 All the tracks under the heads at a given point on all surfaces
 Track: each surface is divided into concentric circles

 10,000 to 50,000 tracks per surface
 ZBR (Zone Bit Recording)

− The number of sectors per track increases in outer zones
 Sector - track is divided into fixed size sectors (100 ~

500 sectors/track)
 Preamble - allows head to be synchronized before r/w
 Data - 512B - 4KB
 Error correcting code (ECC)

− Hamming code or Reed-Solomon code
 Inter-sector gap
 Formatted capacity does not count preamble/ecc/gap

Magnetic Disk
 Performance

 Seek time
− To move the read/write head to the desired track
− 3 ~ 14ms, consecutive tracks less than 1 ms

 Rotational latency
− To locate the desired sector under the read/write head
− On average, it takes a half of a single rotation time
− 5400 ~ 16200 rpm (90 ~ 270 rotations/s), 2 ~ 6ms avg.

 Transfer time
− Depends on the rotation speed and data density
− 30 ~ 40MB/s, 512B sector takes 12 ~ 16us

 Disk Controller
 Accept commands from CPU

− read, write, format (write preambles), control the arm motion,
detect/correct errors, convert byte to a serial bit pattern, buffering/caching,

Disk Access Time

 Disk access time =
 Seek time + rotational latency + transfer time + controller overhead

 For example,
 HDD with the following characteristics

− 10,000 RPM
− Average seek time 6ms
− Transfer rate 50MB/s
− Controller overhead 0.2ms
− No disk idle time

 Average acceess time for a 512B sector =
− 6ms + 0.5 rotation / 10000RPM + 0.5KB/50MB/s + 0.2ms = 6 + 3 + 0.01 + 0.2 =

9.2ms
− Usually seek time is only 25% ~ 33% of the advertised number due to locality of

disk references
− Most disk controllers have a built-in cache and transfer rates from the cache are

typically much higher and up to 320MB/s

Timing Comparison
 Consider a disk with

 Seek time of 4ms
 Rotation speed of 7500 rpm
 512 byte sectors with 500 sectors per track

 Read a file consisting of 2500 sectors (1.28MB)
 Sequential organization

 The file occupies all the sectors of 5 adjacent tracks.
 Seek time = 4ms
 Rotational latency = 4ms
 Read 500 sectors = 8ms
 Total time = 16 + 4 * 12 = 64ms

 Random access
 Seek time = rotational latency = 4ms
 Read 1 sector = 0.016ms
 Total time = 2500 * 8.016 = 20.04s

 Which sectors are read from the disk has a tremendous impact on
I/O performance!

Disk Scheduling Algorithms

 Source: Pearson

Comparison of Disk Scheduling Algorithms

 Source: Pearson

FIFO
 Processes requests from the queue in sequential order
 Fair to all processes
 Approximate random scheduling in performance if

there are many processes competing for the disk

 Source: Pearson

Priority (PRI)
 The control of the scheduling is outside the control of

disk management software
 Goal is not to optimize disk utilization but to meet

other objectives
 Often short batch jobs and interactive jobs are given

higher priority
 Provides good interactive response time
 Longer jobs may have to wait an excessively long time

Shortest Service Time First (SSTF)
 Select the disk I/O request that requires the least

movement of the disk arm from its current position
 Always choose the minimum seek time

 Does not guarantee that the average seek time to be minimum

 Source: Pearson

SCAN
 Also known as the elevator algorithm
 Arm moves in one direction only

 Satisfies all outstanding requests until it reaches the last track in that direction
then the direction is reversed

 Favors jobs whose requests are for tracks nearest to
both innermost and outermost tracks and favors the
latest arriving jobs

 Source: Pearson

C-SCAN (Circular SCAN)
 Restricts scanning to one direction only
 When the last track has been visited in one direction,

the arm is returned to the opposite end of the disk and
the scan

 Source: Pearson

N-Step-SCAN and FSCAN
 N-Step-Scan

 Segment the disk request queue into subqueues of length N
 Subqueues are processed one at a time, using SCAN
 For a large value of N, the performance of N-Step-Scan approaches

that of SCAN. For a value of N = 1, it is the same as FIFO.

 FSCAN
 Uses two subqueues
 When a scan begins, all of the requests are in one of the queues, with

the other empty
 During scan, all new requests are put into the other queue
 Service of new requests is deferred until all of the old requests have

been processed

RAID
 Motivation

 Disk seek time has continued to improve slowly over time
 970 (50~100ms), 1990 (10ms), 2010 (3ms)

 Ideas
 Performance - parallel processing
 Reliability

 RAID (Redundant Array of Independent Disks)
 Consists of seven levels, zero through six
 These levels denote different design architectures that share 3 characteristics

− RAID is a set of physical disk drives viewed by the operating system as a single
logical drive

− Redundant disk capacity is used to store parity information, which guarantees
data recoverability in case of a disk failure

− Data are distributed across the physical drives of an array in a scheme known as
striping

RAID Level 0
 Stripping - distribute data over multiple disks

 When a transferred block consists of 8 sectors, 2 sectors (strip) are
distributed to different disk drive

 If a block size is bigger than # drives * strip size, multiple requests are
needed

 If a single request consists of multiple logically contiguous strips, then up to n
strips for that request can be handled in parallel

 No redundancy and no error detection/correction but
widely used

 Source: Pearson

RAID Level 1 (Mirroring)
 Redundancy is achieved by duplicating all the data

 Every disk in the array has a mirror disk
− When a drive fails the data may still be accessed from the second drive

 Advantage
 A read request can be served by either of two disks.
 There is no “write penalty”.

− Write can be done in parallel. On a write, RAID levels 2-6 must compute
and update parity bits as well as updating the actual strip.

 Principal disadvantage is the cost

 Source: Pearson

RAID Level 2
 Distribute each byte/word over multiple disks
 Add hamming code

 For example, for 4b nibbles, 3b extra
 Issues

 Require all drives to be rotationally synchronized
 Require a substantial number of drives
 On a write, all data disks and parity disk must be accessed

 Effective choice where many disk errors occur
 Usually RAIS2 is a overkill and is not implemented

 Source: Pearson

RAID Level 3
 Distribute each byte/word over multiple disks
 Add parity bit (bit-interleaved parity)

 Requires only a single redundant disk, no matter how large the disk array
 In case of a disk failure, the parity drive is accessed and data is

reconstructed from the remaining devices.
 Can achieve very high data transfer rates

 Source: Pearson

RAID Level 4
 RAID 4~6 make use of an independent access technique

 Each member disk operates independently. Separate IO requests can be
satisfied in parallel.

 Suitable for applications with high IO request rates but not suitable for
applications with high data transfer rates

 Block-interleaved parity
 A bit-by-bit parity strip is calculated across corresponding strips on each data

disk, and the parity bits are stored in the corresponding strip on the parity disk
 A write to disk X1 requires 2 reads of disk X1 and X4(parity) and 2

writes of disk X1 and X4

 Source: Pearson

RAID 4 Level
 Initially, the following relationship holds for each bit I

 X4(i) = X3(i) ⊕ X2(i) ⊕ X1(i) ⊕ X0(i)

 After the write
 X4’(i) = X3(i) ⊕ X2(i) ⊕ X1’(i) ⊕ X0(i)
 = X3(i) ⊕ X2(i) ⊕ X1’(i) ⊕ X0(i) ⊕ X1(i) ⊕ X1(i)
 = X3(i) ⊕ X2(i) ⊕ X1(i) ⊕ X0(i) ⊕ X1(i) ⊕ X1’(i)
 = X4(i) ⊕ X1(i) ⊕ X1’(i)

 Therefore, to calculate the new parity, it must read the
old user data and the old user parity
 Every write operation must involve the parity disk, which can become a

bottleneck.

RAID Level 5
 Similar to RAID-4 but distributes the parity bits across all disks
 Typical allocation is a round-robin scheme
 Has the characteristic that the loss of any one disk does not result

in data loss
 Widely used

 Source: Pearson

RAID Level 6
 Two different parity calculations are carried out and stored in

separate blocks on different disks
 One may use parity (exclusive-OR) and the other can be an independent

algorithm
 Provides extremely high data availability
 Incurs a substantial write penalty because each write affects two

parity blocks
 Compared to RAID5, RAID6 can suffer more than a 30% drop in write

performance

 Source: Pearson

Disk Cache
 Disk cache is a buffer in main memory for disk sectors

 Contains a copy of some of the sectors on the disk

 When an I/O request is made for a particular sector, a
check is made to determine if the sector is in the disk
cache
 If Yes, the request is satisfied via the cache
 If No, the requested sector is read into the disk cache from the disk

LRU
 The most commonly used algorithm
 The block that has not been referenced for the longest

time is replaced
 A stack of pointers reference the cache

 Most recently referenced block is on the top of the stack
 When a block is referenced or brought into the cache, it is placed on

the top of the stack

LFU (Least Frequently Used)
 The block that has experienced the fewest references

is replaced
 A counter is associated with each block
 Counter is incremented each time block is accessed
 When replacement is required, the block with the

smallest count is selected
 Problematic when

 Certain blocks are referenced relatively infrequently overall, but when
they are referenced, there are short intervals of repeated references
due to locality, building up high reference counts. After such interval is
over, the reference count may be misleading.

Homework 10
 Exercise 11.1
 Exercise 11.4
 Exercise 11.6
 Exercise 11.8

	Operating System��Chapter 11. I/O Management and � Disk Scheduling
	Categories of I/O Devices
	Data Rates
	Organization of I/O Function
	Techniques for Performing I/O
	Evolution of I/O Function
	DMA Block Diagram
	DMA Alternative Configurations
	Design Objectives
	Hierarchical Design
	A Model of I/O Organization
	Buffering
	I/O Buffering Schemes
	Single Buffering
	Magnetic Disk
	Magnetic Disk
	Magnetic Disk
	Disk Access Time
	Timing Comparison
	Disk Scheduling Algorithms
	Comparison of Disk Scheduling Algorithms
	FIFO
	Priority (PRI)
	Shortest Service Time First (SSTF)
	SCAN
	C-SCAN (Circular SCAN)
	N-Step-SCAN and FSCAN
	RAID
	RAID Level 0
	RAID Level 1 (Mirroring)
	RAID Level 2
	RAID Level 3
	RAID Level 4
	RAID 4 Level
	RAID Level 5
	RAID Level 6
	Disk Cache
	LRU
	LFU (Least Frequently Used)
	Homework 10

