Mobile Communications (KECE425)

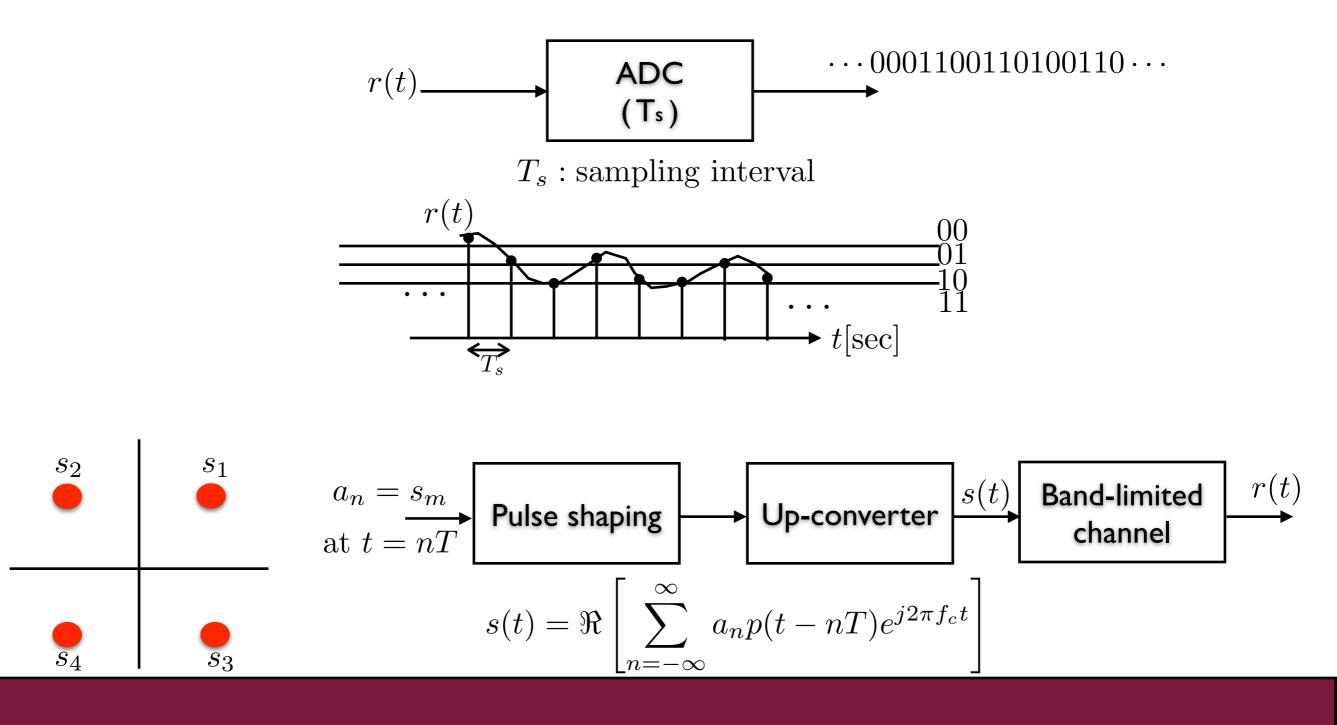
Lecture Note 20 5-19-2014 Prof. Young-Chai Ko

Summary

- Complexity issues of diversity systems
 - ADC and Nyquist sampling theorem
 - Transmit diversity
 - Channel is known at the transmitter (Closed-loop transmit diversity: CLTD)
 - Channel is unknown at the transmitter (Space-time block coding: STBC)
- Transmit-Receive diversity (Maximal ratio transmission)

Analog-to-Digital Converter (ADC)

• ADC consists of two circuit blocks: Sampling and quantization



• Sampling interval: T_s [sec/sample]

• Sampling rate: $R_s = \frac{1}{T_s}$ [samples/sec]

• Quantization level, n [bits/sample]

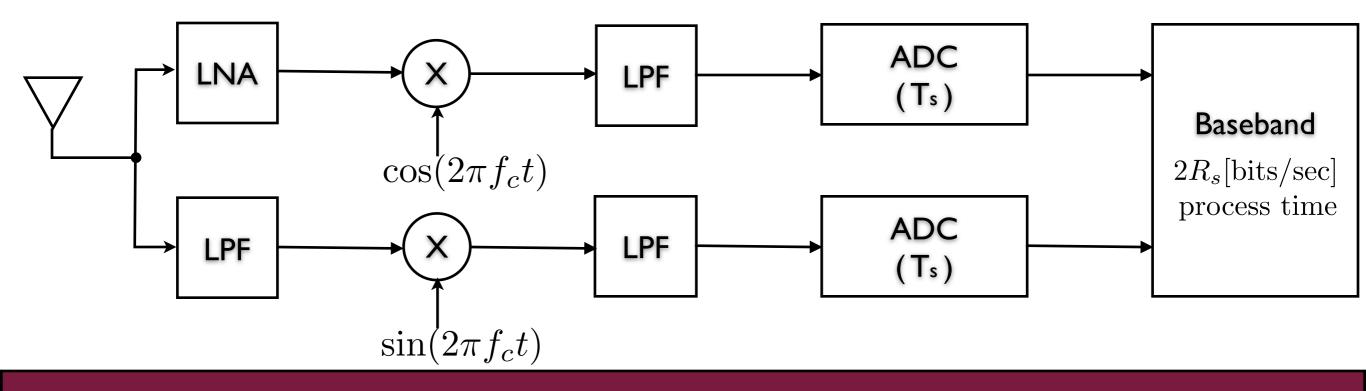
• Sampling rate: $R_s = \frac{n}{T_s}$ [bits/sec]

- Example
 - 10MHz bandwidth and 16-QAM

$$T_s = \frac{1}{20 \times 10^6} = 50 \, [\text{ns/sample}]$$

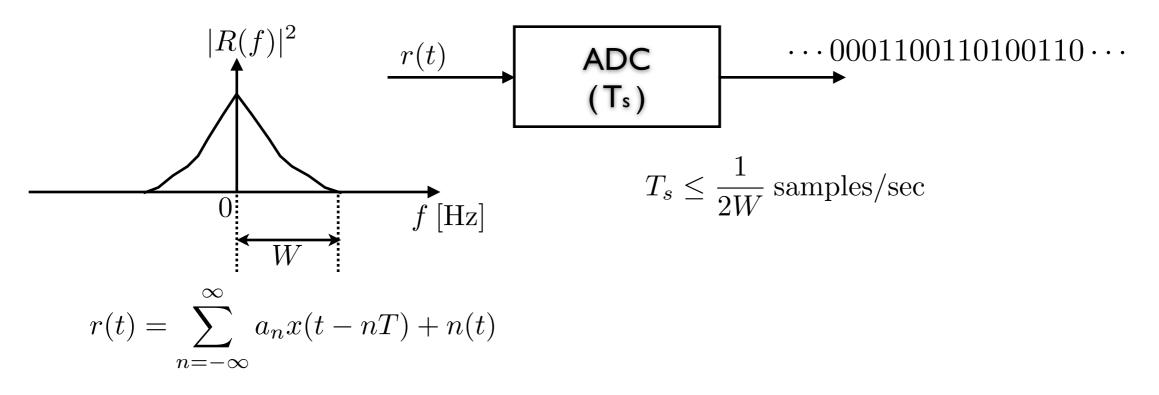
We need at least 4 levels for hard decision of 16-QAM symbols in each of I and Q channels.

$$R_s = 2 \times 20 \times 10^6 \text{ [bits/sec]}$$



Nyquist Sampling Theorem

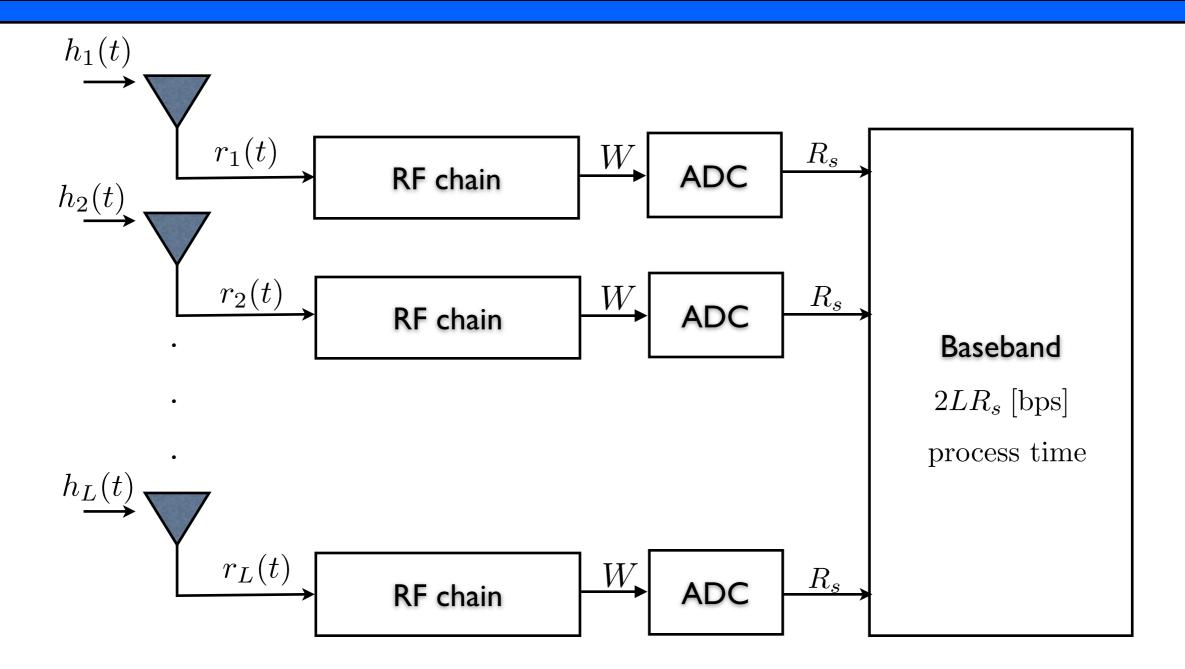
- Nyquist sampling theorem tells us two things for ISI free communications over band-limited channels:
 - 1) The sampling rate in ADC (analog-to-digital converter) should be as fast as twice the signal bandwidth.



2) The pulse shape should satisfy the Nyquist condition.

$$x(nT) = \begin{cases} 1, & n = 0\\ 0, & n \neq 0 \end{cases}$$

Diversity Combining with LADC



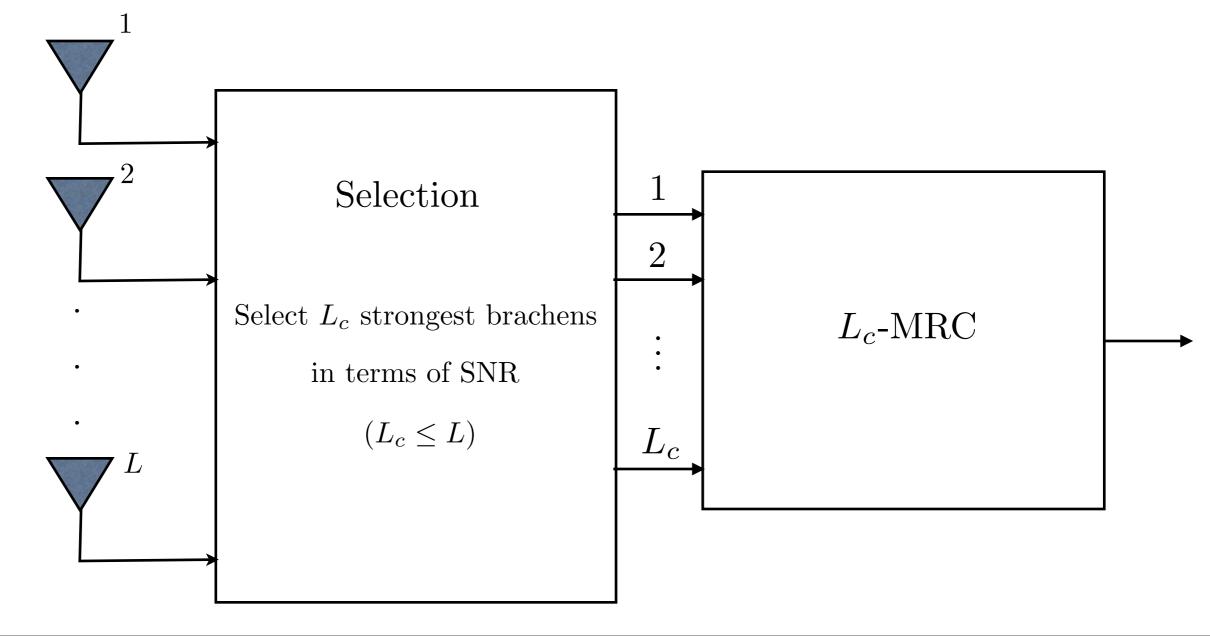
Complexity Comparisons

• MRC, EGC and SC requires L RF chains as well as L ADCs at the receiver.

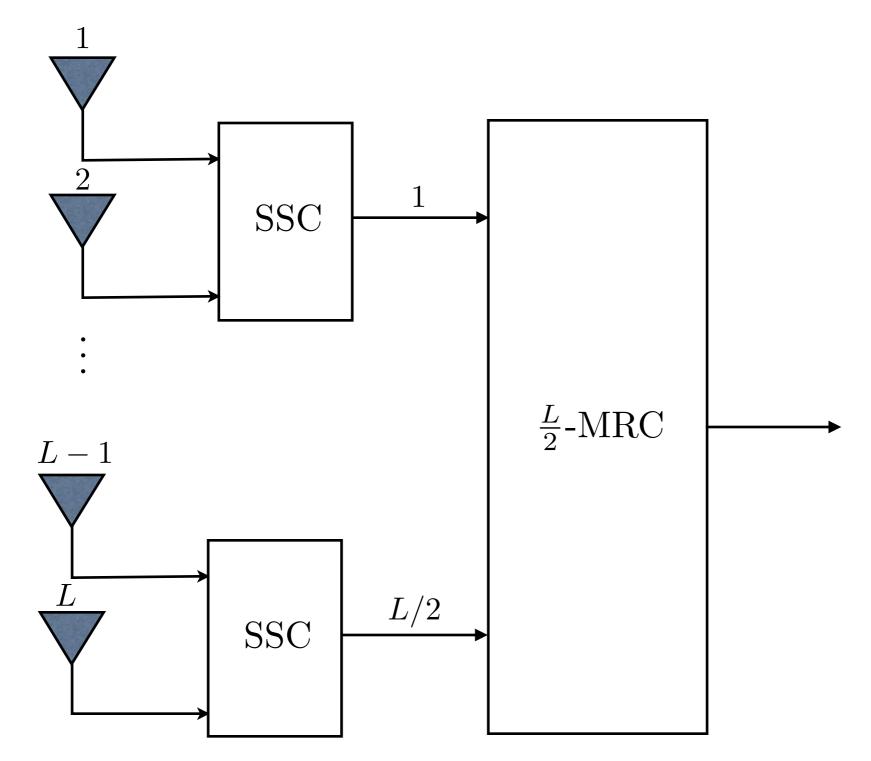
• Only switched diversity requires only one ADC.

Some Combinations of Diversity Schemes

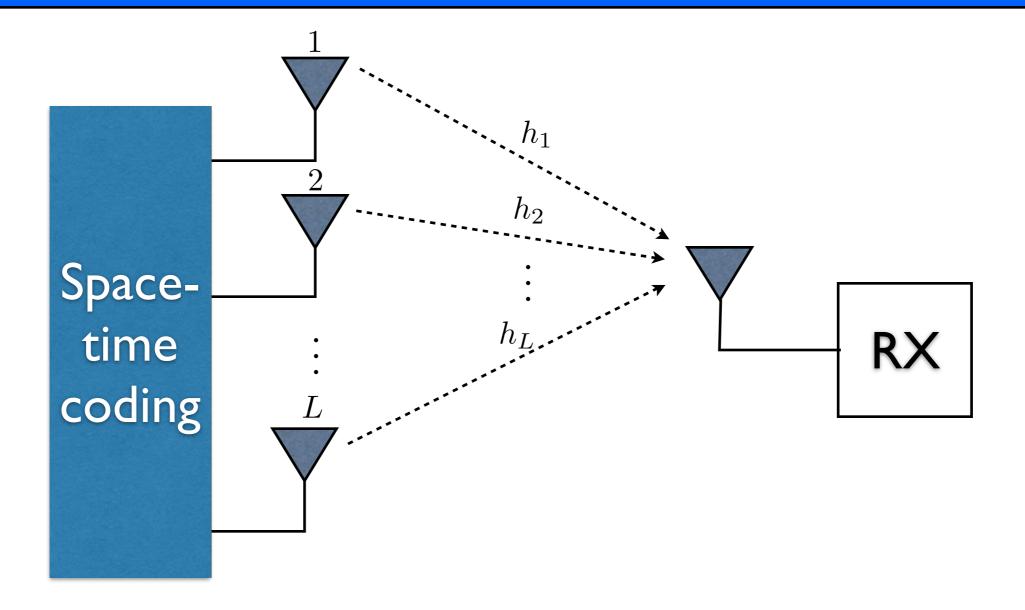
- Generalized Selection Combining (GSC)
 - Maximal ration combining L_c strongest branches out of L branches



• Generalized switched-and-stay combining (GSSC)



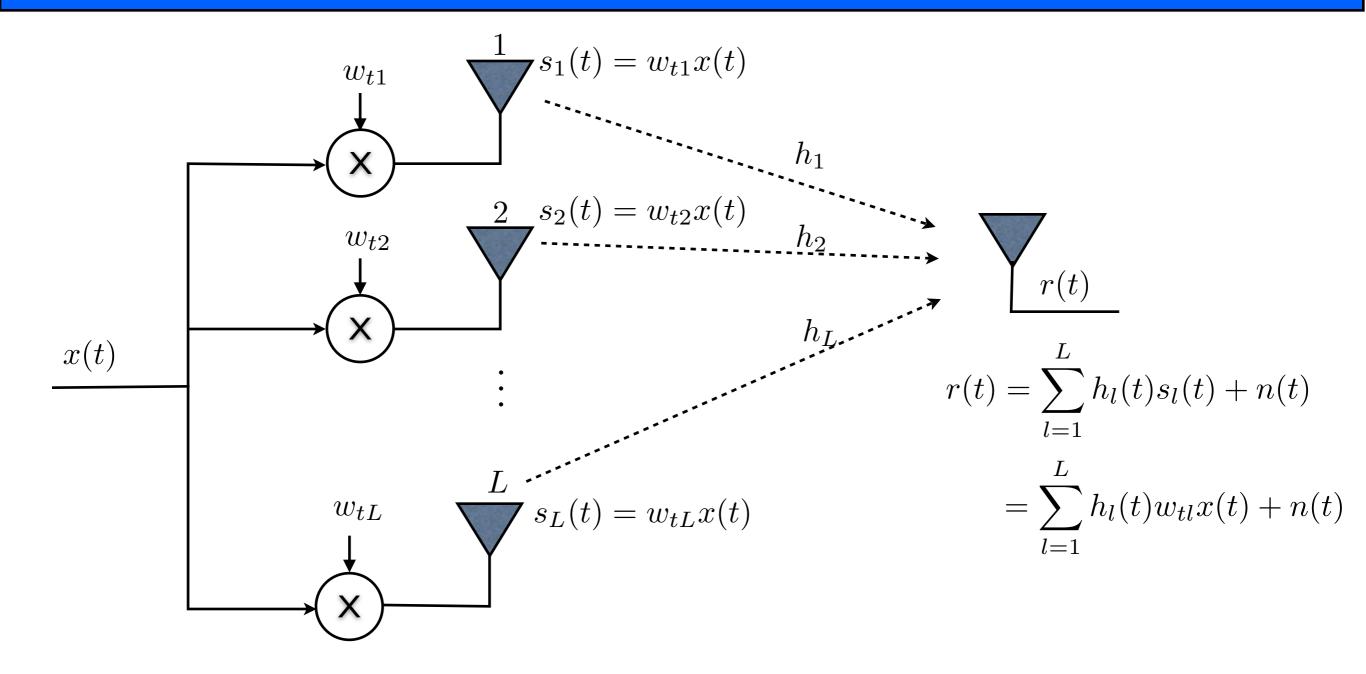
Transmit Diversity Systems



- Channel known at the transmitter
- Closed-loop transmit diversity (CLTD) • Channel unknown at the transmitter

 \implies Open-loop transmit diversity (OLTD)

Transmit Diversity with Known Channel State



• Optimum transmit weights: $w_{tl} = c_l h_{tl}^*$

• Power constraint condition

$$\sum_{l=1}^{L} E[|s_l(t)|^2] \le P_t$$

- c_l must be adjusted to satisfy the power constraint condition.

If
$$E[|x(t)|^2] = 1$$
, $c_l = \sqrt{\frac{P_t}{L\sum_{l=1}^L |h_l|^2}}$

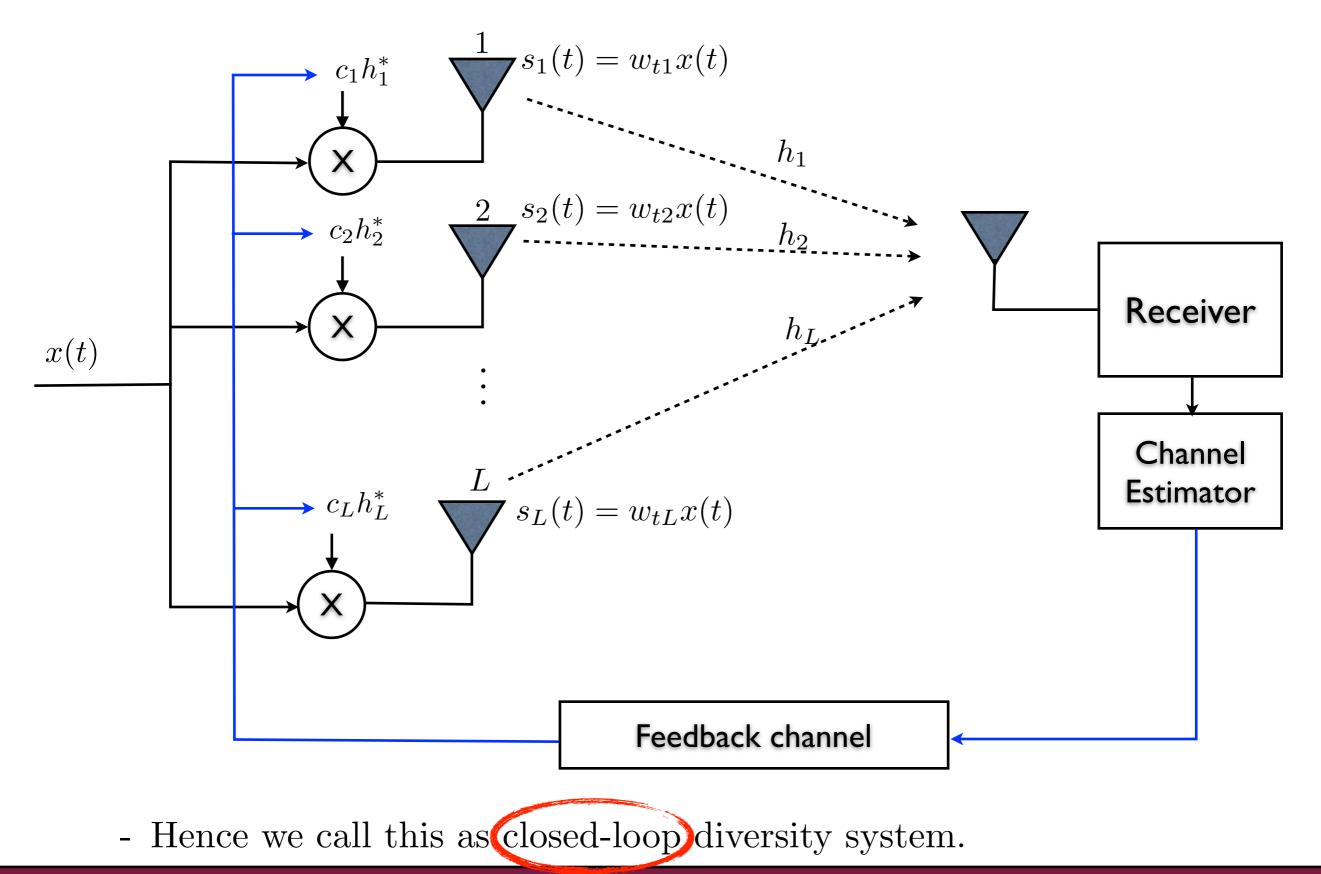
• Received signal

$$r(t) = x(t) \sum_{l=1}^{L} c_l |h_l|^2 + n(t)$$

• SNR of the received signal

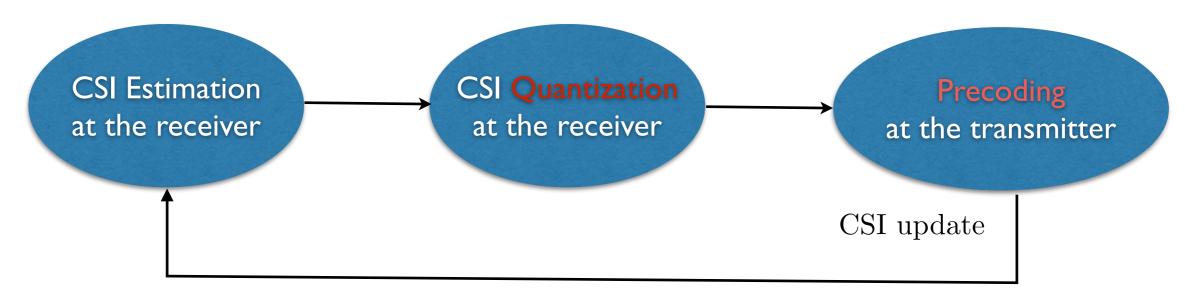
$$\gamma = \frac{\left(\frac{P_t}{L\sum_{l=1}\alpha_l^2}\right)\left(\sum_{l=1}^L\alpha_l^2\right)^2}{N_0} = \frac{\sum_{l=1}^L\alpha_l^2}{LN_0} = \frac{1}{L}\sum_{l=1}^L\gamma_l$$

• Feedback channel for acquiring the downlink channel at the transmitter



- Channel state information (CSI)
 - We call h_l for l = 1, ..., L as the channel state information (CSI).
 - There are two separate CSI: amplitude and phase of the channel h_l .
 - * Channel direction information (CDI): $\angle(h_l)$
 - * Channel quality information (CQI): $|h_l|$

• CSI feedback



- CSI quantization
 - n_1 -bit and n_2 -bit level quantization for CQI and CDI, respectively.
 - Total *n*-bit level quantization which means we have 2^n different channel state.

- CSI update
 - CSI should be updated every coherence time.

- Performance of closed-loop diversity systems
 - Received SNR is

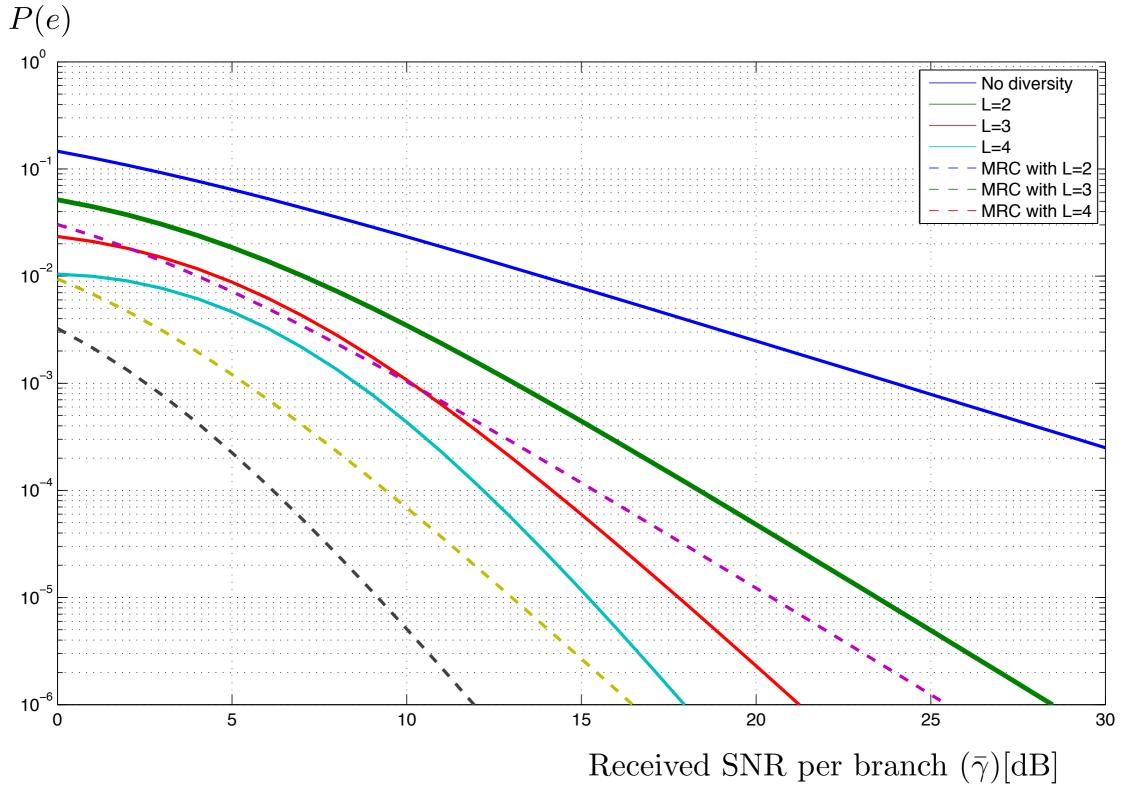
$$\gamma_t = \frac{1}{L} \sum_{l=1}^{L} \gamma_l$$

- Hence, the BER/SER of closed-loop transmit diversity will be the same as the one of MRC by substituting $\bar{\gamma}/L$ into $\bar{\gamma}$.
- For i.i.d. Rayleigh channel with BPSK, we have

$$P(e) = \left[\frac{1-\mu}{2}\right]^L \sum_{k=0}^{L-1} \binom{L-1+k}{k} \left[\frac{1+\mu}{2}\right]^k$$

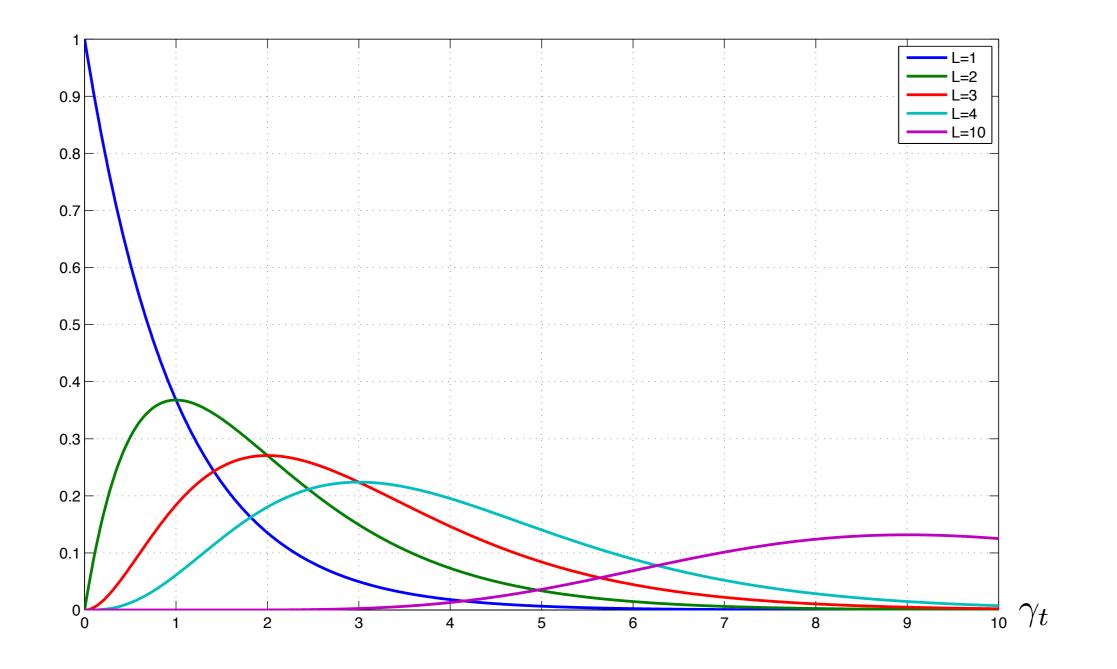
where
$$\mu = \sqrt{\frac{\bar{\gamma}/L}{1 + \bar{\gamma}/L}} = \sqrt{\frac{\bar{\gamma}}{L + \bar{\gamma}}}$$

• BER of BPSK using MRC and closed-loop TD over Rayleigh channels



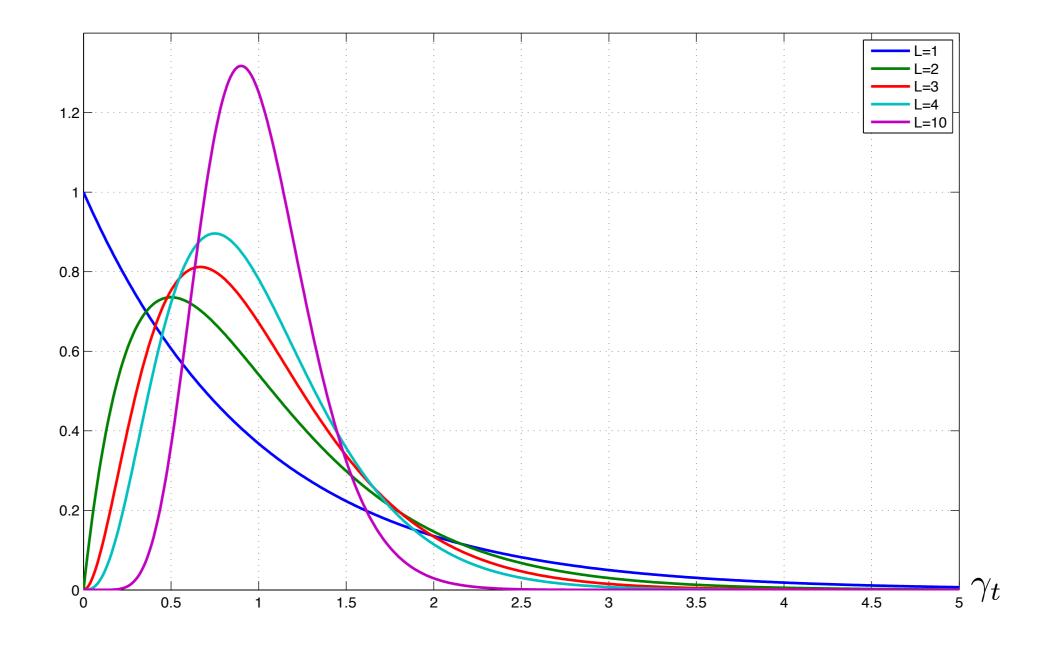
• PDF of the combined output SNR γ_t for L branches MRC

$$p_{\gamma_t}(\gamma_t) = \frac{1}{(L-1)!(\bar{\gamma})^L} \gamma_t^{L-1} e^{-\gamma_t/\bar{\gamma}}$$



• PDF of the combined output SNR γ_t for L branches CLTD

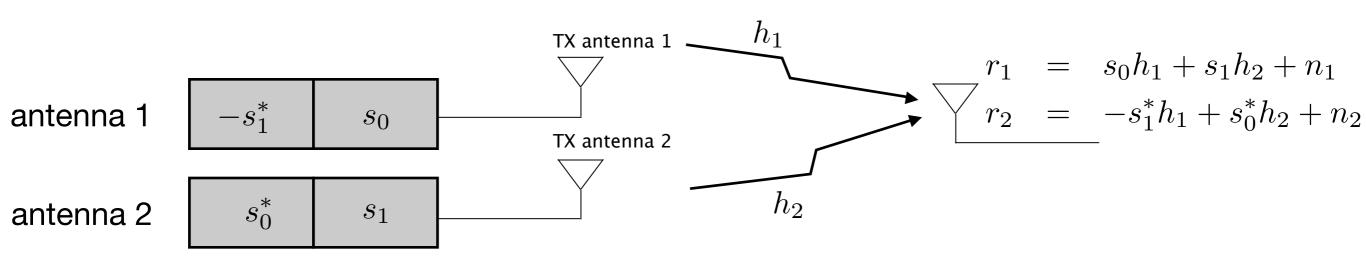
$$p_{\gamma_t}(\gamma_t) = \frac{1}{(L-1)!(\bar{\gamma}/L)^L} \gamma_t^{L-1} e^{-L\gamma_t/\bar{\gamma}}$$



Open-Loop Transmit Diversity

- There are many open loop transmit diversity schemes.
- Out of them, we only study the space-time block coding (STBC) with dual transmit antennas.
- Alamouti devised the STBC with two antennas in 1998 and it is often called as Alamouti coding.

• Alamouti coding (2×1)



[Space-time block code (STBC)

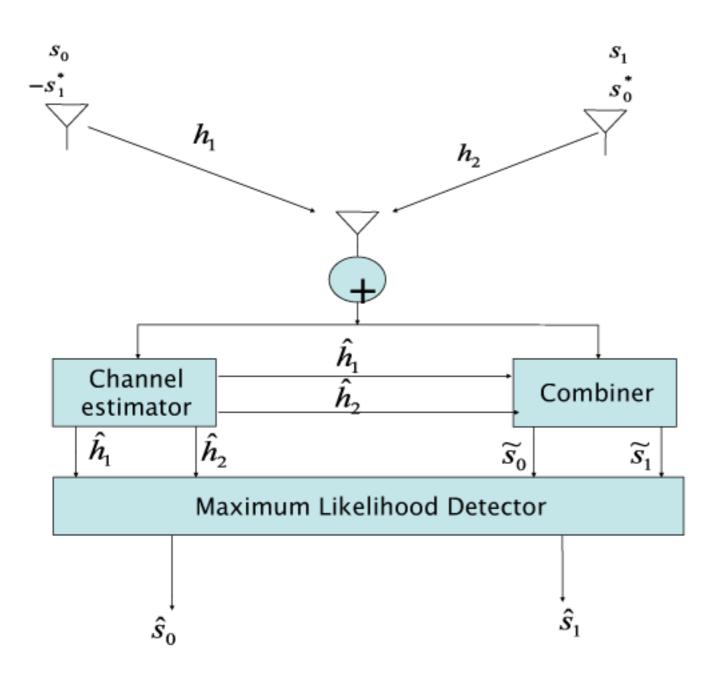
	antenna1	antenna2	
time t	s_0	s_1	
time t+T	$-s_{1}^{*}$	s_0^*	

• QPSK example

$00 \rightarrow s^1$		$1 \perp i$	[Space-time block code (STBC)		
$00 \rightarrow s$ $01 \rightarrow s^2$		v		antenna1	antenna2
$01 \rightarrow s$ $11 \rightarrow s^3$		v	time t	s_0	s_1
$11 \rightarrow s$ $10 \rightarrow s^4$		U	time t+T	$-s_{1}^{*}$	s_0^*
$10 \rightarrow s$	—	-1 - j			1

data: $01001011\cdots \implies s_0s_1s_2s_4\cdots = s^2s^1s^4s^3\cdots$

• Detection of space-time block coding signal



$$r_{1} = s_{0}h_{1} + s_{1}h_{2} + n_{1}$$

$$r_{2} = -s_{1}^{*}h_{1} + s_{0}^{*}h_{2} + n_{2}$$

$$\bigvee$$

$$v_{1} = h_{1}^{*}r_{1} + h_{2}r_{2}^{*}$$

$$v_{2} = h_{2}^{*}r_{1} - h_{1}r_{2}^{*}$$

$$\bigvee$$

 $v_1 = (|h_1|^2 + |h_2|^2)s_0 + h_1^*n_1 + h_2n_2^*$ $v_2 = (|h_1|^2 + |h_2|^2)s_1 + h_2^*n_1 - h_2n_2^*$